Stellingen behorende bij het proefschrift van Leo Kouwenhoven.

1.
Afgestudeerden werkzaam bij het bedrijfsleven krijgen meer onderwijs dan
AIO/OIOs bij universiteiten.

2.

Het is mogelijk om via een periodieke gatestructuur een aantrekkende
wisselwerking te verkrijgen tussen elektronen in een twee-dimensionaal
elektronengas.

3.

Sommige theoretische concepten, zoals chaos en Wigner-rooster in de
mesoscopische fysica, zijn te vergelijken met het concept hemel in religies;
onbegrepen experimenten kunnen er altijd door worden verklaard.

4,

Zolang er Chinese wetenschappers gevangen zitten als gevolg van hun
meningsuiting, is het onmogelijk dat de doelstelling van een wetenschap-
pelijke bijeenkomst in China wordt bereikt.

5.
Het is veel eenvoudiger om een Wigner-molecuul te realiseren in een
quantum dot dan een Wigner-rooster in een twee-dimensionaal elektronengas.

6.

Het culturele hoogtepunt in deze Spaanse zomer zal niet plaatsvinden in de
culturele Europese hoofdstad Madrid, evenmin in Sevilla tijdens de wereld-

tentoonstelling of in Barcelona tijdens de Olympische spelen, maar traditie-
getrouw in Pamplona tijdens de feesten voor de stadsheilige San Fermin.



7.

In tegenstelling tot het Landauer-Biittiker formalisme is een tunnel-
Hamiltoniaan-formalisme in termen van creatie- en annihilatie-operatoren om
fundamentele redenen ongeschikt om coherent transport te beschrijven.

8.
(Voetbal-) Vandalisme is niet te begrijpen zolang men humor als beweeg-
reden niet onderkent.

9.

Het is mogelijk om een optisch analogon van de elektronenturnstile te
realiseren met behulp van enkele excitonen in een quantum dot (dit
proefschrift).

10.

De technologische complicaties om co-tunnelen te onderdrukken in
metallische turnstile- of pomp-varianten, maakt dit soort systemen
ongeschikt voor gebruik als stroomstandaard.

11.
Single-spin effecten in quantum dots geven aanleiding tot magnetische
hysterese.

12.

De aanvallen op het internationale rechtsysieem van bijvoorbeeld Saddam
Hussein en Ghadaffi, zullen op lange termijn de Westerse arrogantie aan het
licht brengen.
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Preface

This thesis describes a number of experiments in the young field of mesoscopic physics. To
characterize mesoscopic systems we will compare them to much smaller atomic, microscopic
systems and our much larger every day, macroscopic world.

Virtually all physical processes in our macroscopic world can be described by classical laws.
Examples are Newton's equations of motion and his gravitation law describing the attraction
between the Earth and other objects, and the Maxwell equations describing electromagnetism as
in relations between currents and voltages or electric and magnetic fields. The typical length
scales of the macroscopic world are set by the limitations of our eyes. The largest distance we
can see is several hundred kilometers on earth and much larger if we look at the moon, and the
sun. On the other hand, the smallest detail we can see is about a hundredth of a millimeter; i.e.
the thickness of a hair.

The microscopic world is the world of nuclei, electrons, atoms, and molecules. The typical
distance between atoms is a few tenths of a nanometer. A nanometer is a million times smaller
than a millimeter. On this very small length scale, classical laws dramatically fail to describe the
physical processes. To describe the behaviour of electrons, for instance, we have to use quantum
mechanics. One consequence of quantum mechanics is the particle-wave duality, which implies
that an electron can behave as a particle or as a wave. The wave-nature of an electron can lead to
phenomena which are unthinkable in our macroscopic world. An example is that an electron can
interfere with itself when there are different paths available for traveling between two points in
space. In classical thinking this would imply something meaningless like a rolling ball that kicks
itself and then turns around. Another example is that an electron can pass, i.e. tunnel, through a
barrier while a ball thrown against a wall is classically not expected to go through the wall.

The size of mesoscopic systems is somewhere between those of microscopic and macroscopic
systems. For instance, the systems studied in this thesis resembling wires and boxes have a typi-
cal size of 100 nanometers which corresponds to a millimeter divided by 10 thousand, or in mi-
croscopic units, to a row of about 500 atoms. The intriguing aspect of mesoscopic systems is
that they sometimes behave as classical systems and at other times they show their quantum na-
ture. We will discuss experiments in which we can tune the behaviour of a mesoscopic box from
quantum mechanical to classical. The quantum mechanical aspects are sometimes particularly
surprising. This is because in systems which are thousands of atoms large, the quantum mechan-

ical wave-nature of single electrons can completely determine macroscopic currents and voltages.
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The study of mesoscopic physics started about 10 years ago as a result of an advanced
technology which enabled the fabrication of small systems in solids. There is an important
concept which makes solids suitable to study quantum mechanical behaviour on distances much
larger than the atomic distance. In clean, crystalline solids, meaning that the atoms form a regular
lattice, a certain number of electrons can move as in free space. When the number of free
electrons is zero, the material is insulating for electrical current as in quartz. In metals such as
copper, each atom contributes one or two free electrons. So, a small metal cube of 100 nanome-
ters still contains about a 1000 million free electrons. This very large number is the reason that
the electron motion in a metal can often be described in a classical way, i.e. as if electrons move
and bounce like billiard balls. In contrast to this, semiconductor materials, such as silicon have a
number of free electrons which can bé tuned by means of material parameters from zero to
typically a thousand electrons in a cube of 100 nanometers. This small number of electrons
makes it much easier to observe quantum mechanical behaviour which is the reason that the
experiments of this thesis are performed on semiconductor nanostructures.

One consequence of the wave-nature of electrons is that they can be confined to a lower
dimension. To explain lower-dimensionality we have schematically shown in the Figure a wave
with a wavelength A and three types of solids: one solid has the shape of a slice, the second of a
pillar or wire, and the third of a box. The free electrons in these solids behave as waves with a
wavelength depending on the density of free electrons in the solid. A smaller density of electrons
yields a longer wavelength, which in semiconductors can greatly exceed the inter-atomic
distance. The electron wave-nature becomes important when its wavelength is comparable to the
size of the host solid. Similar to standing waves in a string which is bounded at its two ends (see
the Figure), only electrons whose wavelength A matches with the size of the solid are allowed in
the system. In the solid slice, therefore, electrons have 4/2, A, 31/2, etc, equal to the thickness
of the slice. As with any standing wave, the electron motion in this confined direction is
completely frozen. The electrons have freedom of motion only in the other two directions. So,
essentially, the electrons live in a two dimensional (2D) world where they have to obey "flatland"
rules. These flatland rules can lead to phenomena which have no analog in our 3D world. In the
pillar, or wire, electrons can only move in one direction, and there is no motion in the two
confined directions. So, the pillar forms a 1D system for the electrons. Complete confinement is
reached in the box, where the electron wave matches the length, width and height of this OD-
box. The physical rules belonging to the dimensionality of a system yield distinct electron

behaviour, and even distinct predictions for macroscopic quantities like resistance. The experi-
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Figure. Upper part: Representation of a standing wave with a wavelength A in a
string bounded at both ends. Lower part: Three confined solids. In the 2D-slice the
electron motion is free in only two directions; in the 1D-pillar, or wire only in one
direction; and in the OD-box the electron motion is frozen in all three directions. In
the confined directions only the lowest mode of Al2 equal to the size of the solid is
shown,

mental observations resulting from reduced dimensionality have been one of the major subjects
of mesoscopic physics.

In this thesis we use a special semiconductor material, which has the 2D slice built in. We
obtain these materials from the Philips Research Laboratories, where they are made with very
clean material growing techniques. At the Delft Institute for MicroElectronics and Submicron
technology (DIMES) we use the lithography facilities to transform the slice into wires, boxes,
and more complicated structures. The techniques to do this are much the same as used for the
fabrication of computer chips, but are developed to be able to make structures which are ten to
hundred times smaller than used in computer chips today. To probe the properties of the
electrons in these small structures we perform current and voltage measurements in the Solid
State group of Hans Mooij at the Faculty of Applied Physics in Delft. For observing quantum
mechanical behaviour, it is important that the structures are cooled to extremely low temperature.

Special refrigerators allow us to reach temperatures of 0.01 degree above absolute zero-tempera-
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ture, which is about 273 degrees below 0 degrees Celsius.

This thesis is roughly divided into two parts. The first part, chapters 1 to 6, describes experi-
ments probing the wave-nature of electrons. It includes the electron transport through a 1D-wire,
a 0D-box, and a series of coupled OD-boxes. The results on these systems demonstrate funda-
mental quantum behaviour, such as a conductance changing in quantized steps when the width of
the 1D-wire is varied (classically the conductance is expected to rise linearly with increasing wire
width); a total resistance smaller than two series resistances which enclose a 0D-box (the classi-
cal Ohm's law predicts the opposite result that the total resistance is the sum of the two resis-
tances in series); and the formation of a 1D-solid in a series of periodically positioned coupled
0D-boxes. The second part mainly relies on the discreteness of the electronic charge in nature. In
a neutral box the number of positive charges equals the number of negative charges. If we put an
extra electron in the box, it becomes negatively charged, which costs a certain energy. In chapter
7 through 10, we use boxes having an entrance and an exit, which we can arbitrarily open or
close. Employing the energy associated with a single-charge, we can manipulate single electrons
in these boxes. One experiment is that we open the entrance and simultaneously close the exit.
We supply just enough energy to charge the box by one single electron, which is therefore pulled
into the box. The entrance is then closed and the exit opens, allowing one electron to leave in
order to discharge the box. So, in every cycle of opening and closing the doors, one electron is
transferred through the box. Repeating this process with a high frequency (typically ten million
times per second) yields a current being equal to the electron charge times this frequency.
Although, this experiment does not yield new physics, we thought that it would be fascinating to
manipulate current at the most fundamental level of a single electron.

It takes many people to be able to transfer a single electron through a box, who I would like to
thank for their vital contributions to the experiments described in this thesis. First of all, I wish
to thank all researchers in the field for the open communication. Their work has continuously
been stimulating and guided us in our own efforts. In Delft this research started several years ago
in collaboration with the Philips Research Laboratories in Eindhoven. My own contributions
started in 1986 as an undergraduate student. Bart van Wees was my adviser during these first
few years. His original way of thinking taught me a lot and strongly motivated me to continue
studying, which is something I gratefully acknowledge. During these first years we worked
together closely with Carlo Beenakker, Henk van Houten, and John Williamson from Philips. I
benefited very much from the intense and lively discussions and from the extensive experimental

collaboration.
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During the last few years new people joined this research. In the semiconductor section of
Hans Mooij's group, I have been working close with Kees Harmans (giving me daily support on
any imaginable subject), Bram van der Enden (who did most of the sample fabrication), Charlie
Johnson (with whom I had some very good turnstile nights), and Nijs van der Vaart (talk to you
later). The work done by the undergraduate students has been of prime importance. I would like
to thank Rick Kraayeveld, Walter Kool, Diederik Maas, Wim de Jong, and Luuk Mur for all
their hard work. The stay of Juanjo Palacios in our group has been a nice motivation to learn
about difficult electron correlations. The connection with the theory group of Gerd Schén with
all its famous visitors has been very stimulating. Especially, I would like to thank Frank
Hekking for his 1D-crystal-work and for numerous discussions. From Philips I gratefully
acknowledge Gerrit Bauer, Marcel Broekaart, Rob Eppenga, Tom Foxon, Laurens Molenkamp,
Toine Staring, and Eugene Timmering for discussions and collaboration.

During my graduate study, I have had the opportunity to work a few months in the group of
prof. Sakaki at Tokyo University. The work and life in Tokyo have been very exciting. I am
hoping that our collaboration will last a long time. Chapter 10 describes the first promising
results of this collaboration. I would very much like to thank Nagamune-san, Motohisa-san, and
Sakaki-sensei for this joined work, Matsuya-san for her essential care to get me around in
Tokyo, and all the other group members for introducing me into Japanese research and soceity.

Beside the research subject itself, I found that a group environment is sometimes very encour-
aging. 1 have great respect for the way Hans Mooij organizes his large group. The variety of
subjects and the mixture of different people in the group stimulate many new activities. The
complete freedom, coffee table, group excursions, and the very regular scientific meetings, make
leaving a scary thought. A result from the group mixture can be found in the latter chapters of
this thesis, which were motivated by discussions with Bart Geerligs on charging effects. I would
also like to thank my office mate Herre van der Zant; our computer expert Huub Appelboom;
Dick van der Marel for discussing fundamentals; Chris Gorter, Leo Lander, Gerard van der
Gaag, Wim Schot, and Willem de Braver for their technical expertises, Ria van Heeren for her
all-around help; and all other group members for their scientific and social contributions. Special
thanks go to the people from DIMES for their essential help and advice on sample fabrication.

Finally, I wish to thank my family and friends. Although it is a strange comparison, you are

much more important to me than this whole thesis.

Delft, April 1992 Leo Kouwenhoven
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CHAPTER 1

Quantum Adiabatic. Electron Transport in Ballistic Conductors

Leo P. Kouwenhoven
Faculty of Applied Physics, Delft University of Technology
P.O.Box 5046, 2600 GA Delft, The Netherlands

ABSTRACT
We review experiments in the quantum ballistic transport regime occuring in submicron
conductors. The conductors are defined in a two dimensional electron gas (2DEG) by means of a
split-gate technique, providing the possibility to tune the size of the conductor. The conductance
of a short and narrow constriction, a quantum point contact (QPC), is quantized in multiples of
2¢2/h at zero and non-zero magnetic field. QPCs are further used to study electron focusing in a
2DEG; the quantized longitudinal conductance in a high magnetic field; the anomalous quantum
Hall effect due to selective population and detection of edge channels; the transition from Ohmic

to adiabatic transport in two QPCs in series; and electron-beam collimation,
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1.1 INTRODUCTION

The properties of electron transport in small conductors are related to the relevant length
scales. In the diffusive transport regime, in which the elastic mean free path /. is much smalier
than the dimensions of the conductor (see Fig. 1.1a), quantum interference effects can produce
deviations from the predictions of classical transport theory. These interference effects result
from phase differences acquired by an electron wave in travelling between two points in the
sample along different possible trajectories. Many different trajectories can arise from scattering
at impurities, resulting in phenomena like one-dimensional (1D) weak localization 1 and
universal conductance fluctuations.? In a ring, where there are only two sets of possible
trajectories from the entrance to the exit, the interference gives rise to periodic conductance
oscillations known as the Aharonov-Bohm effect and Al'tshuler-Aronov-Spivak oscillations.3
To observe these quantum interference effects, the distance electrons can travel with conservation
of phase coherence /¢, must be larger or at least of order the sample dimensions.

Modern technology permits the fabrication of structures in which /, is smaller than the length
L but larger than the width W of the sample (see Fig. 1.1b). In this quasi-ballistic regime,
scattering at the boundary of the conductor is important.45 If the irregularities in the boundary
are much smaller than the Fermi wavelength Ar, the scattering at the boundary is believed to be
specular. For larger irregularities the scattering at the boundary becomes diffusive.

Recently, conductors in the fully ballistic regime (I, >> L,W) have been studied. Elastic
scattering of electrons, which can give rise to resistance,b occurs only at the boundary of the
conductor (see Fig. 1.1c). In metals, the classical ballistic regime has been investigated using
Sharvin point contacts.” To study quantum confinement effects, however, A must be of order
the width of the conductor. Currently it is not possible to satisfy this condition for metals, where
Ar = 0.1 nm. Due to the much lower electron density in semiconductors, A is typically = 50
nm, which is a feasible dimension for fabricating small conductors. Quantum transport in such
ballistic conductors is the subject of this review.

In this review we mainly present work done by the collaboration between Philips Research
Laboratories in Eindhoven and Delft University of Technology (The Netherlands). For a broader
perspective on the field of low dimensional quantum transport, we refer to recent larger review
articles.8-14 In section 1.2, we outline the fabrication process and working principles of a split-
gate sample. We discuss experiments on a short, narrow ballistic constriction, a quantum point

contact (QPC), in section 1.3 for zero magnetic field and in section 1.4 when a magnetic field is
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FIG 1.1. Typical electron trajectories in the diffusive (l, << L,W), quasi-ballistic
(W < l, < L), and ballistic (W,L << l,) transport regime with specular scattering at
the boundary of the conductor. In the ballistic regime, the resistance is entirely due
to backscattering at the geometrical narrowing from the wide region to the small
conductor. (from van Houten et al. in Ref. 8)

applied. We show experimentally that a gradual transition exists from the quantized conductance
of a point contact at zero magnetic field to the quantum Hall effect at high magnetic field. We
interpret this in terms of the Landauer-Biittiker formalism. In section 1.5, we discuss electron
motion in a magnetic field, including the concept of edge channels. We study adiabatic transport
(i.e. with conservation of quantum number) in edge channels in sections 1.6 and 1.7, using two

adjacent QPCs and two QPCs in series, respectively.

1.2 FABRICATION AND WORKING PRINCIPLES OF A SPLIT-GATE DEVICE

The starting point for studying quantum ballistic transport is a two-dimensional electron gas

(2DEG) being present in various semiconductor devices. So far, the highest electron mobilities



4 chapter 1

have been obtained in the 2DEG of GaAs/AlGaAs hetero structures,!5 making this the most
suitable semiconductor system for studying ballistic transport. Fig. 1.2a shows a cross-section
of this hetero structure. The 2DEG is at the GaAs-AlGaAs interface. The electron density ng in
the 2DEG depends on the amount of negative-doping in the AlGaAs layer. Typical values are ng
= (1 -5)1015m2 50 Ar = 2%/n)/2 = (80 — 30) nm. Due to the separation of the ionized
donors from the 2DEG by the undoped AlGaAs spacer layer, the electron mobility in the 2DEG
can be larger than 100 m2V-1s-1, corresponding to a transport elastic mean free path larger than
10 pm.13 (Note that the transport mean free path includes the effectiveness of the scattering, and
is larger than our definition of lp which gives a measure of the mean distance between
impurities. 16)

To confine the electrons laterally in the 2DEG a pattern must be defined on top of the hetero
structure, which is done by standard lithography. Depending on the desired pattern, one can
choose between many variations in the lithography process steps (see for a review Ref. 17). One
procedure is shown schematically in Fig. 1.3. An organic resist film (typically 100 nm thick) is
spun on the substrate. For submicron structures one chooses an electron sensitive resist.
Exposing the resist with an electron beam (using a modified electron microscope) results in a
molecular-mass difference between the exposed and unexposed parts (see Fig. 1.3a). An
appropriate developer removes only the exposed resist, resulting in the pattern shown in Fig.
1.3b. Due to this mask pattern, an evaporated material only sticks at the substrate where the
resist has been removed (see Fig. 1.3c). The mask itself can be removed by dissolving the
remaining resist (so-called lift-off), leaving a small pattern on top of the substrate (see Fig.
1.3d). The minimal resolution of such a pattern with present day electron-beam lithography
facilities is about 10 nm.

From this point there are basically two ways to transfer the pattern to the 2DEG. The "hard"
way is to use the pattern as an etch mask.!7 Etching removes the portion of the 2DEG not
protected by the pattern. The boundaries of the etched pattern cause a depletion region, so the
conducting width in the 2DEG is unknown and often much smaller than the defined width.18
A'soft" way to transfer the pattern to the 2DEG is to use it as a gate for which reason the pattern
must be made from a metal.19.20 Applying a negative voltage to the gate depletes the electron gas
beneath it, thereby confining electron motion to the ungated region. For a split-gate geometry, as
in Fig. 1.2a, this results in a small conducting channel. The advantage of the split-gate technique
is that the conducting width in the 2DEG can be tuned from the defined lithographic width of the
pattern to zero, by making the gate voltage more negative.
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A simple split-gate geometry with which one can define a short and narrow constriction in the
2DEG is shown in Fig. 1.2b. Transport between the two wide 2DEG regions occurs only
through the point contact and can be studied as a function of the width by changing the gate
voltage. The width of the constriction can be made comparable to the Fermi wavelength, so this
device is called a quantum point contact (QPC). The actual induced potential in the 2DEG is
unknown, but self-consistent calculations 2! indicate that it has a saddle-shape (see Fig. 1.4a). In
the constriction, electrons are confined in the lateral x-direction and slowed down by the
presence of a potential barrier in the y-direction. Making the gate voltage more negative
simultaneously reduces the width and increases the barrier height. For zero-width or a barrier
which is higher than the Fermi energy Er of the 2DEG, the QPC is pinched-off and electron
transport between the wide 2DEG regions is impossible. Fig. 1.4b shows a scanning electron

micrograph of a double point contact device.
1.3 QUANTIZED CONDUCTANCE OF A POINT CONTACT

The resistance of a point contact in the classical ballistic regime is known as the Sharvin
resistance.6 The Sharvin resistance is entirely due to elastic backscattering at the geometrical
narrowing of the ballistic point contact. Dissipative processes, which bring the electron system
into thermodynamic equilibrium, take place far away from the point contact (a few times the
inelastic mean free path). Therefore, the cause of the resistance in this system is spatially
separated from its corresponding Joule heating. The conductance of a Sharvin point contact in a
2DEG is:22
Gy = LW _ 2622V (1.3.1)
n AF
which is, as one expects, proportional to the width W of the point contact. 2e2/h is the
fundamental conductance unit 23 (the factor 2 accounts for the spin-degeneracy) and the Fermi
wavevector kr or wavelength Ar are connected to the 2D electron density ng by: kg = 2n/Af =
(2rng)'/2, Deviations from Eq. 1.3.1 due to the wave nature of electrons occur when AF~W
(i.e. kFW/m ~ 1). A derivation of the quantum version of the Sharvin conductance appears
below. First we discuss the experimental results.

The conductance of a point contact is measured with an ac lock-in technique by passing a

current / through the sample and measuring the voltage V between the current source and sink
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FIG. 1.4. (a) Saddle-shaped potential induced in the 2DEG upon application of a
negative gate voltage, resulting in lateral confinement in the x-direction and a
potential barrier in the longitudinal y-direction (from Beenakker, and van Houten in
Ref. 14). (b) Scanning electron micrograph of a double-QPC device. The white
areas are the Au gates, and the marker is 1 pum long. The QPCs are 250 nm wide
and are separated by 1.5 um.
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FIG. 1.5. Conductance versus gate voltage of a QPC at 0.6 K and B = 0,
demonstrating the conductance quantization in units of 2e2(h (from Ref. 22).

(see Fig. 1.2b). To prevent electron heating, eV is kept small compared to the thermal energy
kpT. Fig. 1.5 shows the conductance G in units of 2e2/h = (12906 £2)-! versus gate voltage Ve
measured at 0.6 K and B = 0. Strikingly, G decreases in steps of 2e2/h as Vg is made more
negative. At Vg = -2.2 V, the conductance becomes zero, corresponding to a pinched-off point
contact. The plateaus occur at integer multiples of the conductance-unit 2¢2/h. In total 16 steps
are observed between the formation of the QPC in the 2DEG at Vg = -0.3 V and pinch-off. This
conductance quantization was discovered independently by Wharam et al.,24 who also used a
split-gate technique.

Fig. 1.6 shows the conductance versus gate voltage for different temperatures.25 The
conductance quantization gradually disappears as T is raised. G(Vy) is roughly linear at 4.2 K, in
accordance with the classical dependence of Eq. 1.3.1. Although the classical result cannot
explain the quantization, we note that the plateau values are obtained in Eq. 1.3.1 whenever Af/2
is an integer times the width W. Eq. 1.3.1 predicts that an increase in W of Ar/2 (which is 21 nm
in this sample) increases G by 2e2/h. The observation of 16 steps then gives an estimate of the

width W of the QPC at Vg = -0.3 V of about 340 nm, somewhat larger than the lithographic
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(2e°/h)

CONBUCTANCE

-2 -1.8 -1.6

GATE VOLTAGE (V)

FIG. 1.6. Conductance versus gate voltage at B = 0 and different temperatures.
Increasing the temperature thermally averages the higher plateaus first (from Ref. 25).

width of 250 nm. These considerations are reminiscent of the states of a particle-in-a-1D-box,
which, as we show below, is the basic idea behind the conductance quantization.

We note that the conductance quantization is not exact. First, a series resistance (= 400 Q)
originating from the wide 2DEG regions has been subtracted to line up the plateaus at their
quantized values.22 Furthermore, the plateaus are not completely flat. This may be due to
scattering at impurities in the vicinity of the QPC or, as we discuss below, the abruptness of the
constriction.

We now show that the conductance quantization results from transport through 1D subbands,

To calculate transport through a QPC we start with the Hamiltonian;
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2 2
H =85 evin+ B (1.3.2)
2m 2m

m* = 0.067 m, is the effective mass in GaAs. This Hamiltonian does not contain the potential
V(y) in the longitudinal y-direction (see Fig. 1.4a), which describes the transition from the wide
2DEG regions to the narrowest point in the QPC. Glazman et al.26 have shown that if V(y)
varies sufficiently smoothly (i.e. adiabatically), the potential variation in the x- and y-directions
may be decoupled. The narrowest point then forms the bottleneck of the QPC in the sense that it
completely determines the transport properties. We assume this to be the case and take the
Hamiltonian of Eq. 1.3.2 to describe the transport at the bottleneck. For the confinement in the
lateral x-direction, we follow Berggren et al.27 and choose a inarabolic confining potential V(x) =
112m*w,2x2. Self-consistent calculations of Laux et al.2! have shown that small split-gate
samples have a confinement close to such a parabola. The advantage of using a parabolic
potential is that the resulting Schrodinger equation can be written in the form of a harmonic

oscillator having energy eigenvalues:

20,2
Ep = (n—%)hwo+72—”:ly; (n=12,-) (1.3.3)

which contains a free-electron kinetic energy dispersion in the longitudinal y-direction. In the
lateral x-direction the energy states, indexed by n = 1,2,---, are quantized and separated in
energy by hw,. Eq. 1.3.3 describes 1D subbands, because the electron motion is free in one
 direction only. Fig. 1.7 shows the 1D subband dispersion versus longitudinal wavevector ky.
The right-going electrons, with a velocity v, = 1/h-(dE,/dky), originate from the left 2DEG
reservoir, which populates at zero temperature all the states up to its electro chemical potential
H1. Similarly, the left-going electron states are occupied up to f12, the electro chemical potential
of the right 2DEG reservoir (see Fig. 1.2b). A voltage difference V = (7 — up)/e between the
two reservoirs results in a net current /, which is carried by the (uncompensated) electron states
in the energy interval between pj and pz. Note that we define the Fermi energy Er as Er = i =

2 when V = 0. The net current / at zero temperature is:
I=e § ‘;IdE%%v,,(E)T,,(E) (1.3.4)

7=l iy

which includes the transmission probability of the n-th subband T,(E) to describe possible

scattering events. N denotes the number of occupied subbands, the largest number for which
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FIG. 1.7. Energy Ep versus longitudinal
wavevector ky from Eq. 1.3.3 at the bottleneck
of a QPC assuming a parabolic confinement
potential. The 1D subbands are separated by
hw,. A net current results from the uncompen-
sated occupied electron states in the interval
between L] and [, the electro chemical poten-
tials of the two wide 2DEG reservoirs.

L—
ky

(a) electric (b) hybrid (c) magneto
B=0 B#0 W, >> 0o

FIG. 1.8. ID subband dispersion for three values of the magnetic field,
illustrating magnetic depopulation. The energy splitting is electric (h,) in (a), and
hybrid (ho, with 02 = w,2 + @c2) in (b). For large magnetic fields (c¢) the 1D
subbands are Landau levels with an energy splitting of ha,.

En(ky = 0) < Ef. The 1D spin-degenerate density of states is: dN,/dE = 2/n-(dE ,,/dky)'l. The
important aspect of 1D transport is the cancellation of the energy dependence in the product of
velocity and density of states: (AN ,/dE)-v, = 4/h. For small voltages (eV << EF), one can take
Tn(E) = Ty(EF). Substituting in Eq. 1.3.4, one finds for the conductance G =1/V = el/(i] — 2):

2e2 N .
G = 5 L Ta(ER) (1.3.3)
n=1
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I;qu. 1.3.5 is known as the 2-terminal Landauer formula.28 If no backscattering takes place, so
Y Th(EF) =N, Eq. 1.3.5 reduces to:
n=1

G ==N (1.3.6)

demonstrating that each occupied subband contributes 2¢2/4 to the conductance. The subbands
are sometimes called 1D current channels to emphasize that each channel carries the same amount
of current.

In the experiment, a decreasing V, increases the barrier in the QPC, and simultaneously
increases the lateral confinement and consequently the energy splitting 7@, Both effects increase
the subband energies. As long as Er is between two subband bottoms, N is constant and G is
quantized. If a subband bottom moves through Ef, N changes by 1 and G by 2¢2/h.

Several numerical calculations 29 have shown that Eq. 1.3.6 gives an accurate description of a
QPC with the assumptions that impurity scattering is absent and that the potential variations are
smooth. Sharp potential variations, possibly present at the entrance and exit of the QPC 30 or
originating from donor impurities,31.32 can give rise to backscattering and destroy the
quantization. The assumption of an adiabatic constriction in Eq. 1.3.2 is then no longer valid. At
T > 0 the reservoirs inject electrons with a Fermi-Dirac distribution, which averages the
conductance: G(T) = f (-df19E)-G(T = 0)-dE. Comparing this with the temperature dependence of
the curves in Fig. 1.6, we found that the subband separation %@, gradually increases from about
1 meVatVg=-1Vito3meVatV,=-21 V. This illustrates that thermal averaging has a
stronger effect on the higher plateaus, as observed in Fig. 1.6.

1.4 DEPOPULATION OF 1D MAGNETO-ELECTRIC SUBBANDS

We now turn to the case of a finite 2DEG with an applied magnetic field in the z-direction. In
the Hamiltonian of Eq. 1.3.2, the magnetic field B is incorporated by substituting (p — eA) for
the momentum p. In the Landau gauge for the vector potential A = Ay = Bx, the Schrédinger

equation is once again that of a harmonic oscillator, but now with energy eigenvalues:27

7k, 2
E, = (n—%)hw+-mvl;— (1.4.1)
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describing hybrid magneto-electric subbands. With @2 = @y? + .2 and the cyclotron frequency
@, = eB/m", the energy separation % is now a combination of the electrical confinement and the
magnetic field. mp = m*@?/m,? is a magnetic field dependent effective mass yielding a smaller
dispersion for larger magnetic fields. The influence of the magnetic field on the subband
dispersion is shown schematically in Fig. 1.8. For B = 0 the subbands are determined by the
electrical confinement only. A small magnetic field increases the subband splitting and reduces
the dispersion. For large magnetic fields, the subbands have the magnetic energy separation 7,
and a vanishing dispersion. In this case, the subbands are the well-known Landau levels. It can
be seen from Fig. 1.8 that on increasing the magnetic field, the number of occupied subbands
decreases. This process is known as the depopulation of magneto-electric subbands.

One can show that the velocity and density of states also cancel in a magnetic field and that
Eqgs. 1.3.5 and 1.3.6 are still valid.33.34 The conductance quantization is therefore independent
of the nature of the subbands. From the above analysis it follows that a gradual transition exists

between the quantized conductance G = N-2¢2/h at zero magnetic field (with N the number of

12 FIG. 1.9. QPC conductance versus
r gate voltage at 0.6 K for several
10 values of magnetic field. The broaden-
= ing of the plateaus demonstrate the
o~ 8t increasing energy splitting in a
gj | magnetic field. The curves have been
— 67 offset for clarity (from Ref. 34).
”%" 4
<
e
2
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occupied electric subbands in Fig. 1.8a) to Gy = Ny -2¢?/h at a high magnetic field (with N;, the
number of occupied Landau levels in Fig. 1.8c), which is known as the quantum Hall
conductance.

So far we have adopted a parabolic confining potential. We note however, that this choice
does not affect the general conclusions, such as the cancellation of velocity with the density of
states, and the conductance quantization at zero and non-zero magnetic field.

Fig. 1.9 shows the conductance of a QPC versus gate voltage for several values of the
magnetic field.34 As can be seen, the quantization is preserved in a magnetic field. Above B = 1
T, spin-resolved plateaus develop at odd multiples of e2/h. The depopulation can be seen from
the fact that at a fixed gate voltage, the number of plateaus (or, equivalently, the number of
occupied subbands), decreases with increasing magnetic field. Several papers have reported a
quantitative fitting of the depopulation of subbands and reasonable agreement was found for
different models for the confining potential.27.35 From the measurements of Fig. 1.9, we
deduced subband splittings Aiw, of about 1 meV at Vg =-1 Vand 3 meV at Vg = -2V, in
agreement with the values obtained from the temperature dependence of the plateaus mentioned
earlier.25 A third independent way to determine the subband splittings is by measuring the non-
linear transport properties of a QPC, from which we have found similar values.36

The transport properties of different kinds of single QPCs have been studied extensively
experimentally as well as theoretically, and are quite well understood (see the review by van
Houten, Beenakker, and van Wees in Ref. 13). In the remaining part of this review, QPCs will
be used to study electron transport in a 2DEG. By using one QPC as an injector of electrons in
the 2DEG and a second as a collector, one is able to study the electron motion between the

injector and detector, especially related to scattering processes.
1.5 ELECTRON MOTION IN A MAGNETIC FIELD

In the previous section, we discussed the influence of a magnetic field on the subband
dispersion in momentum space. We consider now the electron motion in real space, which yields
a simple physical picture of the QHE and associated effects. To elucidate the quantized electron

motion in a high magnetic field, we first discuss the classical motion in a small magnetic field.

1.5.1 Electron Focusing

In the absence of an electric field E, the balance of the Lorentz force Fi = ev-B and the
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centripetal force F = m*v2/r leads to a cyclotron motion of the electrons, with (at the Fermi
energy) a cyclotron radius r. = m*vr/eB and angular frequency @, = eB/m* (see Fig. 1.10a).
When the electric field E = - VW(x,y) # 0, the electrons have a net drift velocity vp = E/B. At the
boundary of the sample, where £ is large, the collisions at the boundary result in skipping orbits.
The skipping electrons have a net velocity along the boundary of the sample, and the velocity
direction is opposite for the two opposite edges (see Fig. 1.10a).

The skipping orbit motion of electrons along a 2DEG boundary in a small magnetic field has
been observed in an electron focusing experiment by van Houten et al.37 The geometry of Fig.
1.4b with two adjacent QPCs with a separation of L =3 um was used, where one QPC injects
electrons into the 2DEG and the second QPC is used as a collector. The injected electrons are
focused by the magnetic field on the boundary at distances p-2r; (p = 1,2---) from the injector.
Focusing into the collector occurs when p-2r; = L. In the experiment the collector voltage is
measured as a function of magnetic field B. From the condition p-2r, = L it follows that the
largest number of élcctrons reaches the collector when By, = p-2m*vpleL which leads to
periodic oscillations in the collector signal. This is shown in Fig. 1.11 for 4 different
temperatures. The arrows indicate the expected focusing fields, which are in agreement with the
measurements up to about the eighth focusing peak. The focusing experiment demonstrates that

the collisions at the boundary are highly specular, since diffusive boundary scattering would

(a) FIG. 1.10. (a) Schematic represen-
tation of the classical electron motion

in a magnetic field.
Q (b) Corresponding quantum picture

of the energy states of Eq. 1.5.1

along a cross-section of the 2DEG,
O illustrating the formation of edge
channels at the boundary of the 2DEG
[formed by the electro static potential
energy eV(x,y)] where the Landau
levels intersect the Fermi energy EF.

ev(x,y)
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FIG. 1.11. Collector voltage versus magnetic field B, demonstrating the focusing
of skipping electron orbits from injector to collector, as illustrated in the inset. The
arrows indicate the expected focusing fields (from Ref. 37).

average the oscillations.38 For negative magnetic fields, no focusing oscillations are observed,
because the electrons are deflected away from the collector. The small oscillations seen for B <0
at lower temperatures are Shubnikov-de Haas oscillations. At lower temperatures additional
finestructure appears, which is explained by taking into account quantum interference effects
between trajectories being injected at different angles.37
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1.5.2 Edge Channels
In a high magnetic field the electron motion is quantized. The flux ¢ enclosed by an electron in
a cyclotron orbit equals an integer times the flux quantum @, = h/e, and the quantized electron

energies are:
Ep = (n—Dho + eViry) (1.5.1)

where n = 1,2,--- is the spin-degenerate Landau level index, and we have ignored the Zeeman
energy splitting + % gupB. We assume that the electro static potential V(x,y) is flat in the interior
of the sample and rises at the boundary. Electro static variations due to impurities are ignored,
because we are dealing with ballistic samples. Fig. 1.10b shows schematically the Landau
energy levels of Eq. 1.5.1. The electron states at the left boundary are occupied up to y;, the
electro chemical potential of the current source, and at the right boundary up to y, the electro
chemical potential of the current sink (see Fig. 1.2b). The velocity v, is proportional to the slope
JE,/0x, so that at the two sample boundaries, the electron states have opposite velocity
directions, similar to the classical case of Fig. 1.10a.

The relevant electron states for linear transport are only those at the Fermi energy. As can be
seen, these are located at the sample boundaries, where the Landau levels intersect the Fermi
energy (E, = EF), and they extend in the direction perpendicular to the cross-section of Fig.
1.10b. The intersections are the current-carrying states, which are known as edge channels.
33,39,40 The net current / only results from the uncompensated states in the interval between 117
and p2. (The total current due to the states below uy is zero.) The transport through edge
channels is 1D.33 Edge channels can therefore also be viewed as 1D current channels, each
carrying a current I, = 2e/h-(14] — uz). With the Hall voltage V7 = (7 - t2)/e measured between
the two sample boundaries, this directly gives the quantized Hall conductance Gy = N -[,/Vy =
Np-2€2/h,

So far we have ignored all scattering processes. Biittiker 41 pointed out that due to the spatial
separation of the electron states with opposite velocity, backscattering requires scattering from
one sample boundary to the other. Backscattering is therefore suppressed when the edge states
between iy and p) are not connected by extended electron states. This is the case in Fig. 1.10b,
where the Fermi energy is between two bulk Landau levels. (In the classical picture of Fig.
1.10a, backscattering is suppressed when r, << [,.41) In the next section we discuss the

suppression of forward scattering which involves transitions between edge channels at the same
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boundary.

The location of edge channels follows from the condition Ef = E, yielding:
EG = eV(xy) = Efp—(n—Dho (1.5.2)

Eg is refered to as the guiding center energy. Eq. 1.5.2 implies that edge channels at the same
boundary but with a different Landau level index n are separated in the transverse direction and
follow different equipotentials along the boundary. Edge channels with larger n follow a lower
equipotential (see for instance that the n = 2 edge channel in Fig. 1.10b is located at a lower

potential eV(x,y) compared to the n = 1 edge channel).

1.5.3 Quantized Longitudinal Conductance
QPCs can be used as selective edge channel transmitters by means of their controllable barrier
height Eg. The barrier reflects the n-th edge channel if Eg > EG(n). This is equivalent to saying
that at the barrier the Landau level energy Ej, is above the Fermi energy Ep, so this level is
unoccupied. From Ep = Eg(V,) and Eg = E(B) it follows that the number N of transmitted
channels can be changed by varying the gate voltage Vg or the magnetic field B. If T is the partial
transmission of the uppermost edge channel, the 2-terminal conductance G of a QPC is given by:

G = ZTCZ(N+T) (1.5.3)

Quantization of the 2-terminal conductance therefore occurs in those intervals of B and Vg where
T = 0. One can also define a 4-terminal conductance of a QPC. Fig. 1.12 shows schematically a
QPC defined in a 2DEG to which 6 Ohmic contacts are attached. A magnetic field is applied such
that M (spin-degenerate) edge channels are occupied in the bulk 2DEG regions of which N are
transmitted through the QPC. The Fermi energy is assumed to be between two Landau levels so
that no backscattering occurs in the bulk 2DEG regions. We define the 4-terminal conductance
by G12,3¢4 denoting that the net current I = N-2e/h-(i1 — p42) flows from contact-1 to 2 and the
voltage is measured between contacts-3 and 4: G2 34 = el/(13 — pg). To calculate G 12,34 we
note that the voltage contacts-3 to 6 do not draw a net current and, as can be seen in Fig. 1.12,
contact-5 is in equilibrium with current contact-1 (Us = g41), and similarly contact-4 with 2 (g =
uz2). (Note that G12,12 = G 12,54 implying that a 2-terminal conductance can be measured by

using actually 4 contacts.) The incoming current /;, in contact-3 is the sum of the contributions
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FIG. 1.12. Sample geometry with contiguously quantized regions. In the bulk
2DEG M edge channels are occupied, of which N are transmitted through the QPC
and (M —N) are reflected.

20

=

~g

N 15¢

wo o e ]

(]

Z 10} -

[

(&8 ]

=

(am]

=

8 §l———————————— Z(_ji __________________
0 1 2 1

-2 -1.8 -1.6 -1.4 -1.2 -1

GATE VOLTAGE (V)

FIG. 1.13. Quantized longitudinal conductance versus gate voltage at 0.6 K
defined as G2 34 in the geometry of Fig. 1.12. In the bulk M = 5 edge channels are
occupied (B = 1.43 T). On decreasing the gate voltage, the number N of transmitted
channels decreases from 4 to 1, resulting in quantized plateaus in accordance with
Eq. 154 at values 20, 7%, 313, and 1 37 times 2e2/h, indicated by the solid lines. The
dashed lines indicate the expected values for spin-resolved plateaus.
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of all incoming edge channels: I;, = 2e/h-{N-piz + (M — N)-u;1}. Contact-3 will adjust its electro

chemical potential z13 such that the outgoing current I,,,; = M-2e/ h-u3 equalizes I;,. From I;, =

Tout it follows pi3 = {(M — N)-ug + N-pt2}/M. With p3— pg = MM‘ N (w1 - uz) one finds for the
4-terminal conductance:
2¢2 MN
G234 = " yr—n (1.5.4)

It is interesting to note that if a transmission probability is defined as T = N/M, Eq. 1.5.4 can be
written as G72,34 = M-2¢2/h-T/(1 — T), which is reminiscent of the original Landauer formula.28
It is easy to show that the Hall conductance G72,35 still corresponds to the number of occupied
Landau levels in the bulk: G235 =M -2e2/h, despite the backscattering of (M — N) edge
«channels. In standard QHE measurements G2 34 is denoted as the longitudinal conductance
containing the Shubnikov-de Haas oscillations. However, Eq. 1.5.4 implies that a longitudinal
conductance quantization can occur at non-integer multiples of 2e2/h, simultaneously with a
quantized Hall conductance.

Experiments on the quantized longitudinal conductance were reported first by Haug et al.42
and Washburn et al.43. In Fig. 1.13, we show a measurement of G 12,3¢(Vg) for B = 143 T
where M = 5 (spin-degenerate). The longitudinal conductance displays plateaus at non-integer
values of 2e2/h, in accordance with Eq. 1.5.4.

The above description of transport in the quantum Hall effect (QHE) regime in terms of edge
channels, known as the Landauer-Biittiker formalism, is reviewed in Ref. 13. A more general
derivation than given above can be obtained from Biittiker's multi-probe formula, which also
gives reciprocity relations for reversal of the magnetic field. 4

1.6 ANOMALOUS INTEGER QUANTUM HALL EFFECT

The edge channel description gives an appealing physical picture of the QHE. However, the
experiments described in this paper so far do not give direct evidence for the existence of edge
channels. For instance, the quantized longitudinal conductance can also be explained by
considering contiguous regions of different electron densities and Kirchoff's law for adding
voltages 45 (note that 1/G 12,34 = 1/G12,12-1/G 12 35). Moreover, the previous experiments do
not give any information about scattering between edge channels. In this section, we discuss an
experiment involving two adjacent QPCs which directly probes the transport through a particular
edge channel.
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FIG. 1.14. (a) Geometry used to observe an anomalous quantization of the Hall
conductance, for which QPC A is used as current probe and QPC B as voltage
probe. (b) Comparison between the Hall conductance Gy and the 2-terminal
conductance of the current probe G4. The voltage probe conductance is kept fixed
at Gg = 2€2/h. Although the number of occupied Landau levels in the 2DEG is
unchanged, Gy follows the largest probe conductance (from Ref. 46).

In section 1.5 we discussed the electron focusing from one QPC to an adjacent second QPC
by small magnetic fields (B < ~1 T). These fields are too small to quantize the electron motion,
and the focusing can be explained in terms of classical cyclotron motion. We consider now the
same geometry in the high field regime (B > ~1 T). Fig. 1.14a shows schematically two adjacent
QPCs A and B defined in a 2DEG with an applied magnetic field such that two edge channels are
occupied. The 2-terminal conductances G4 and Gp of the individual QPCs measure the number
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of transmitted channels and are given by Eq. 1.5.3. The Hall conductance Gy is normally
thought to be independent of the characteristics of the current and voltage probes and to
correspond directly to the number of occupied (spin-degenerate) Landau levels Ny in the 2DEG:
Gy = Np-2e/h. However, if QPC A in Fig. 1.14a is used as a current probe and QPC B as a
voltage probe, one can obtain an anomalous quantization of the Hall conductance.46

The edge channels shown in Fig. 1.14a are assumed to be independent, i.e. no scattering
events occur among different channels or, equivalently, electrons travel with conservation of
quantum-subband-number. In this case the transport is adiabaric. The edge channels are occupied
up to the electro chemical potential of the last Ohmic contact they have left. (We assume ideal
Ohmic contacts, meaning that all incoming electrons are absorbed and all outgoing states are
occupied up to the same electro chemical potential.) Consequently, in the region between the two
QPCs, the two edge channels have an unequal population. Channel-2 is occupied up to 47, while
current probe 5 populates channel-1 up to ys. This process is called selective population of edge
channels. If the voltage probe B detects all edge channels like an ideal Ohmic contact, the regular
quantum Hall conductance is measured. However, this is not the case in Fig. 1.14a where the
voltage probe selectively detects only the first channel. The second channel is neither populated
by the current probe nor detected by the voltage probe and, therefore, does not contribute to the
Hall conductance. The Hall conductance Gsq,61 equals 2e2/h instead of 4e2/h which a regular
Hall measurement would give. In general one can show that in the absence of inter-edge channel

Scattering the Hall conductance is given by:%6
Gy = max (Gy, Gp) (1.6.1)

implying that Gy is completely determined by the characteristics of the probes and is independent
of the number of occupied Landau levels in the 2DEG.

Fig. 1.14b compares the measured probe conductances G4 and Gg with the Hall conductance
GH. The magnetic field is kept fixed at 3.8 T, corresponding to Ny = 2. The voltage on QPC B,
defining the voltage probe, is also fixed such that only the first edge channel is transmitted, and
therefore Gp = 2e2/h. The voltage Vg4 on QPC A, defining the current probe, is varied,
resulting in a decreasing G4 in accordance with Eq. 1.5.3. Again we note that a normal Hall
measurement would give a constant conductance Gy = 4e2/h. However, Fig. 1.14b shows a
Hall conductance which virtually follows the largest probe conductance in agreement with Eq.
1.6.1 (for Vga>-1.5V, Gy = Ga > 2e2/h; for 2.1V < Vea<-15V,Gy=Ga=Gp=2e2lh
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corresponding to the edge channel flow of Fig. 1.14a; and for Vg4 <-2.1V, Gy = G = 2¢2/h).
The experiment demonstrates that QPCs can be used to selectively populate or detect edge
channels and that on short distances of order pim the transport through edge channels is
adiabatic. Subsequent experiments have shown that a non-equilibrium population can persist up
to larger distances (several tens of im's).47 In particular, it is found that the topmost channel is
virtually decoupled from the lower edge channels even over macroscopic distances of several
times 100 um.47-51 These experiments have clarified the important role of measurement probes
in the QHE regime. Moreover, it has become clear that a local description in terms of a
conductivity tensor is not appropriate to describe transport in the QHE regime. The fact that a
non-equilibrium population can persist even over macroscopic distances shows that a non-local
description should be used, which includes the properties of the entire sample, conductor and.
measurement probes. This is naturally incorporated in the Landauer-Biittiker formalism. A
combined local/non-local description has been proposed by McEuen et al.5! which agrees well
with non-equilibrium experiments in macroscopic samples.

Recent theoretical 52-54 and experimental 33,56 work has suggested that a transport description
in terms of edge channels may also be valid in the fractional QHE regime. With a geometry
similar to that of Fig. 1.14a, one can measure a fractional QHE, while the 2DEG has an integer
filling factor.56 The value of the fractional quantization corresponds directly to the probe
characteristics, which can be explained if one assumes the existence of fractional edge channels.
However, the origin of these fractional edge channels is still controversial, partially due to the

rather complicated many-body origin of the fractional QHE.
1.7 TRANSITION FROM OHMIC TO ADIABATIC TRANSPORT

In section 1.5 and 1.6 we discussed the transport between two adjacent QPCs. In a small
magnetic field electron focusing is observed, and in a high field an anomalous QHE due to
selective population and detection of edge channels. Similar effects occur in a configuration of
two QPCs in series, however, reflected differently in the conductance. We show in this section
that the series configuration may be used to investigate how and when adiabatic transport is
established.57

1.7.1 Transport through two QPCs in series
Fig. 1.15 shows a SEM photograph and a schematic layout of a sample with two QPCs in
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FIG. 1.15. SEM photograph (a) and schematic layout (b) of two gate pairs A
and B, which define in the 2DEG two 300 nm wide QPCs, connected by a dot-
shaped cavity with a diameter of 1.5 um.
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series connected by a dot-shaped cavity with a diameter of 1.5 pm. The electron density of the
ungated 2DEG is 2.3-1015 m-2 in this sample. The dot is built up from two pairs of gates A and
B. Application of a negative voltage to only one pair of gates and zero-voltage to the other pair
defines a single QPC. This allows the measurements of the conductances G4 and Gg of the
individual QPCs as well as the conductance Gy, of the two QPCs in series. The narrow side
channels, which separate the two gate pairs, are immediately pinched-off when the dot is formed
in the 2DEG.

To describe the transport through the QPCs in series, we distinguish three regimes. If the
occupation of the electron states equilibrates in the dot, Gy, is just the Ohmic addition of G4 and
Gpg:

Gor ~ Ga ' C3 (1.7.1)

We call this the Ohrmic transport regime. For the equilibration it is sufficient that the right- and
left-going states in the dot are equally occupied, but not necessarily in the lowest available energy
states. This equilibrium can be established by elastic scattering only. We expect Ohmic transport
to occur in our structure when the magnetic field is zero. To illustrate this, a typical electron
trajectory is shown in Fig. 1.16a for B = 0. The electron feels a completely different boundary
between two collisions. The boundary is therefore not smoothly varying compared to the
electron motion at B = 0. After a few collisions the electron has lost its direction memory and the
probability to escape through QPC A is just: G4/(Ga + Gp) and equivalently through QPC B:
Gg/(G4 + Gp), resulting in the Ohmic addition for G,,. An enhanced series conductance at B =
0 can occur due to beam collimation which we discuss below.

The second, intermediate regime is characterized by the absence of backward scattering and
perfect equilibration in the forward direction. This means that the right-going states in the dot are
in mutual equilibrium as are the left-going states. However, the right-going states do not

equilibrate with the left-going states. In this case, the series conductance is given by:58

(1.7.2)

where M is the number of subbands in the dot. Eq. 1.7.2 implies that with a finite number M of
subbands in the dot, the series conductance is enhanced above the Ohmic value of Eq. 1.7.1. As

mentioned before, suppression of backscattering occurs for B # 0 when the right- and left-going
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FIG. 1.16. Electron transport through the dot at
different values of magnetic field B. (a) At B = 0
scattering in the dot equilibrates the electron states
resulting in Ohmic transport. (b) At small B,
backscattering is suppressed but forward scatter-
ing is not. (c) At high B, the edge channels are
decoupled and scattering is absent, resulting in
adiabatic transport.

states are separated at opposite sample boundaries, roughly taking place when twice the
cyclotron radius r, becomes smaller than the diameter of the dot. In our structure this occurs
when B > ~0.1 T. The motion along one boundary can still be non-adiabatic, when the shape of
the boundary changes strongly over a distance r. In quantum mechanical terms, the edge
channels at one boundary overlap strongly and even small irregularities bring them in mutual
equilibrium (see Fig. 1.16b). Let N4, Np denote the number of occupied subbands in the two
QPCs. Due to the separation of right- and left-going states, an electron injected by QPC A will
have a probability Ng/M to escape immediately through QPC B. Thereafter it has a smaller
probability to escape through QPC A, which is equal to (1 — Ng/M)-(Na/M). The second
probability to escape through QPC B is accordingly smaller, etc. This difference in escape
probability is the origin of the correction term in Eq. 1.7.2 compared to Eq. 1.7.1.

The third regime is the adiabatic transport regime, where there is neither forward nor
backward scattering. In this case, none of the states equilibrate, and the electrons travel through

the entire device with conservation of quantum-subband-number. The transport is now
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FIG. 1.17. Comparison of individual QPC conductances G4 and Gp with the
series conductance Gy (dashed lines) at 0.6 K for different values of magnetic field
B. (a) Gser is roughly half G4 = Gp at B = 0 indicating Ohmic transport. The lower
solid line is calculated from Eq. 1.7.1. (b) Gy is larger than half Ga ~Gp at B =
0.5 T indicating suppression of backscattering in the dot. The lower solid line is
calculated from Eq. 1.7.2 (see text). (¢) Gser = GA = Gp at B = 1 T demonstrating
adiabatic transport. (d) In this case, G4 = 4€2/h is fixed, and Gp is changed. Gggr
equals the smallest QPC conductance in accordance with Eq. 1.7.3.

determined by the bottleneck of the system in the sense that those electrons which can pass the

highest barrier in the circuit can also pass the other barriers. Gser is therefore determined only by
the smallest conductance of the individual QPCs:

Gser = min (G4, Gp) (1.7.3)
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Comparing Egs. 1.7.1, 1.7.2 and 1.7.3 illustrates that if the amount of scattering is reduced, the
series conductance increases accordingly. Obviously, the adiabatic regime is obtained when a
high magnetic field is applied, so that the edge channels do not ovetlap, as illustrated in Fig,
1.16c. Besides the absence of backscattering, forward scattering is also completely suppressed,
and Fig. 1.16¢ shows that the smallest QPC conductance determines the series conductance.

We show now experimentally that the different transport regimes correspond to different
values of the magnetic field. Fig. 1.17 displays the conductances of the individual QPCs and the
series conductance (dashed line) as a function of their corresponding gate voltages for three
values of the magnetic field. At B = 0 (see Fig. 1.17a), G,y is about half of the nearly equal
QPC conductances G4 ~ Gp indicating that we have Ohmic transport. A quantitative comparison
is made by calculating G, from the measured G4 and Gp substituted in Eq. 1.7.1 and is shown
by the lower solid line. Fig. 1.17b shows that at a small magnetic field of 0.5 T the series
conductance is enhanced above the Ohmic value (G is larger than half the QPC conductances.)
The lower solid line is now calculated using Eq. 1.7.2 where we have taken M = 5, the expected
number of occupied Landau levels in the dot. The agreement indicates that at B = 0.5 T
backscattering is suppressed, but forward scattering is not. At B = 1 T, the transport is adiabatic.
Fig. 1.17c shows that the series conductance is equal to the single QPC conductances. For a
more striking demonstration of adiabatic transport, Gy, is measured with fixed G4 = 4€2/h and
changing Gp. As can be seen in Fig. 1.17d, Gy, almost exactly follows the smallest QPC
conductance, in accordance with Eq. 1.7.3 (for Vg > -0.65 V, Gger = Ga = 4e2/h; for 075V
<VgB<0.65V, Gser = Ga = Gp = 4€2/h; for Vgp < -0.75 V, Gger = Gp < 4€2/h).

The observation of a series conductance equal to the smallest conductance in the circuit is a
striking consequence of quantum adiabatic transport. The fact that adiabatic transport occurs for
B > 1T is related to the geometry of our structure. Glazman and Jonson 59 have derived general
conditions for the magnetic field above which adiabatic transport occurs in relation to the shape
of the sample boundary.

We have not treated the situation here where both QPCs only partially transmit a certain edge
channel. In this case, a 1D edge channel loop is formed in the dot in which OD-states arise.
These OD-states have been observed at very low temperatures of about 10 mK and are described
in detail in Ref. 60.
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1.7.2 Electron-Beam Collimation and Electron Focusing in a Dot
In the first experiment on two QPCs in series, Wharam et al.6! found that in their structure at B
= 0, the series conductance was enhanced about 40 % above the Ohmic value. Beenakker and
van Houten 58 attributed this enhancement to collimation of the electrons in a beam. Strikingly,
their classical model, which treats electrons as billiard balls, can describe a range of transport
effects occuring in small conductors in which quantum effects were expected to be important.62
To illustrate the collimation of an electron-beam, Fig. 1.18 shows some typical trajectories for a
constriction with sharp corners and one with smooth corners. The sharp-cornered constriction
transmits the electrons from all incoming angles. The angular distribution function P(q) of the
outgoing electrons is isotropic. The smooth-cornered constriction, in contrast, reflects electrons
coming in with a large angle. The corresponding distribution function P(c) shows an enhanced
number of electrons emitted in the forward direction. This collimation becomes stronger if a
potential barrier is present in the constriction.58 To observe the electron-beam collimation, a
magneto-conductance experiment was performed by Molenkamp et al.63 with one QPC forming
the electron-beam and a second oppositely-placed QPC detecting the electrons transmitted
directly through both QPCs. This set-up is illustrated in Fig. 1.19a for the dot device. Due to the
collimation (with beam angle A) a fraction T of the electrons is transmitted directly through both
QPCs, resulting in an enhanced series conductance above the Ohmic value. A small magnetic
field B deflects the beam along the detecting QPC, thereby decreasing the number of directly

(b)
_

90° +90° 90° o +90°

FIG. 1.18. Illustration of electron-beam collimation by a smooth constriction.
The angle distribution function P(a) shows an enhanced number of electrons
emitted in the forward direction.
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transmitted electrons, and accordingly the series conductance. The electron-beam is deflected just
beside the detecting QPC when B = By, following from:63

. A L nLeBy,;
sin (?) = 2—"(: = “T:& (1.7.4)

where L is the distance between the two QPCs, in our case the diameter of the dot, 1.5 um.,
Anticipating the measurements, we already note that similar to the case of two adjacent QPCs,
electron focusing oscillations can be expected in the dot, as illustrated in Fig. 1.19b. For closed
geometries like the dot, the focusing is sometimes referred to as geometrical resonances, leading
to an increased transmission when the two involved length scales (r¢ and L in our case) are
commensurate.52 If a perfect circular dot is assumed, we find that (non-periodic) oscillations are

expected at magnetic field values By, 40"

k,
Bypdot = "e—R—ta"-l (TI) (1.7.5)
with p the number of collisions in the dot. It is interesting to note that the ideas of electron-beam

collimation and the geometrical resonances explain 62 the quenching of the Hall effect 64-66 and

the negative bend resistance,67 which have been observed in crossed-wires.

©]

FIG. 1.19. (a) The collimation of the electron-beam, with angle A, results in an
enlarged number of electrons directly transmitted from the injecting QPC through
the collecting QPC. The deflection of the beam by a magnetic field decreases the
direct transmission. (b) lllustration of electron focusing in the dotforp = 1 andp =
2 collisions.
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The measured 2-terminal magneto-conductance of the dot shown in Fig. 1.20 contains a
variety of effects, but they are easily identified. First we note that G, is symmetric around B =
0, a general property of a 2-terminal conductance. Increasing B from zero, Gy decreases until a
minimum is reached at B,,;, = 0.07 T. This decrease is due to the deflection of the electron-
beam, and from Eq. 1.7.4 we estimate that the beam angle A =709; a similar value was observed
by Molenkamp et al.63

The arrows in Fig. 1.20 indicate the magnetic field values Bfocdo‘ where according to Eq.
1.7.5 focusing maxima are expected. The observed agreement suggests that the assumption of a
circular-shape of the dot is valid for our structure.

The overall shape of the magneto-conductance is known as a camel-back shape which was
predicted by Beenakker and van Houten 58 and observed also by Staring et al.58 and Main et
al.69 in different geometries of two QPCs in series. The camel-back is described by Eq. 1.7.2.
On increasing B, first the subbands in the dot start to depopulate. The decreasing number M of
occupied subbands in the dot, results according Eq. 1.7.2 in an increasing series conductance.
When the number of subbands in the QPCs also start to depopulate (roughly when 2r, = W) G4
and Gpg decreases, which results according Eq. 1.7.2 in a decreasing series conductance. The
camel-back shape is another demonstration of the intermediate transport regime discussed before,

where backscattering is absent but forward scattering not.

Gy (22°/h)

-0.9 0 0.5

B (T)

FIG. 1.20. Magneto series conductance Ggey for Vo = -0.5 V at 0.6 K. The
arrows indicate the expected focusing maxima.
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In Fig. 1.21 the series conductance normalized to its minimal value at B,,;,, is shown versus a
small range of magnetic field for several gate voltages between -0.2 V (lowest curve) to -0.75 V
(uppermost curve), illustrating the influence of the shape of the QPC on the beam collimation.
The conductance minima changes from Bpp, =0.07 T for Vg = -0.2 V t0 Byyin = 0.05 T for V
=-0.75 V corresponding to beam angles of 70° to 500, respectively. The increasing collimation
indicates that a more-negative gate voltage smoothens the potential of the QPC (and increases the
potential barrier). This is also evidenced by the increasing maxima which show that the
percentage of directly transmitted electrons increases from about 3 % to 10 %. The additional
structure, as for instance the minima at B = 0, are not well identified. To exclude possible
diffraction effects, we have measured the traces at a relatively high temperature of 4.2 K. A
possible explanation might be a beating effect between the depopulation of subbands in the dot
(which increases Gger) and the deflection of the electron-beam (which decreases Gygp). Similar
fine structure was also observed by Main et al.69

10 %

<<
XS

GSER/GSER. nin

-0.1 -0.05 0 0.05 0.1

MAGNETIC FIELD (T)

FIG. 1.21. Magneto series conductance Gser normalized on its minimal value
Gser.min for gate voltages between -0.2 V (lowest curve) and -0.75 V (uppermost
curve) at 42 K. The scale indicates the percentage of directly transmitted electrons.
The curves have been offset for clarity.
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1.8 SUMMARY AND CONCLUSIONS

The state-of-the-art of submicron technology has reached the level which enables one to study
quantum adiabatic electron transport occurring in ballistic conductors. An important development
has been the use of split-gate devices which have the advantage that the properties of the
conductor can be changed locally, i.e. without affecting the characteristics of the reservoirs. This
has led to the observation of the quantized conductance, resulting from the (de-) population of
1D subbands in a QPC. Another example is the changing Hall conductance, while the
characteristics of the 2DEG are unchanged and only the properties of the measurement probes are
varied.

Many experiments have been performed in the quantum ballistic regime, of which we have
discussed a few in this review, In nearly all cases, the Landauer-Biittiker formalism has been
used successfully to describe the transport experiments, and moreover, has usually given an
appealing physical picture. For the description, it has been sufficient to treat the electrons as
independent particles. Further miniaturization of the devices can lead to structures which contain
only a few electrons. Then the interesting possibility arises to study electron-electron interactions

in a controlled-way.
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ABSTRACT
The conductance of ballistic quantum constrictions in a two dimensional electron gas has been
studied experimentally as a function of the applied voltage. Large non-linearities are found in the
current-voltage characteristics. We give a simple model, which explains the main features of the
non-linear conductance. Breakdown of the conductance quantization occurs when the number of
occupied one dimensional subbands becomes unequal for the two velocity-directions. A critical

voltage is found for the breakdown, which is equal to the subband separation at the Fermi level.
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The quantization of the conductance of a constriction in a two dimensional electron gas
(2DEG) was recently discovered in the experiments of van Wees et. al.! and Wharam et. al.2
They defined a ballistic constriction in the 2DEG of a high mobility GaAs-AlyGa)-xAs hetero
structure by means of a metallic split gate. Application of a negative voltage V,; on the gate forms
the constriction in the 2DEG by electro static depletion. The two-terminal conductance G,
measured at zero magnetic field between the two wide regions of 2DEG on each side of the
constriction, was shown to change stepwise in units of 2e2/h on varying V. The quantization of
G can be explained from the formation of one dimensional (1D) subbands in the constriction due
to the lateral confinement. Then G is given by the Landauer type formula 3 G = N 2¢2/h, with N,
the number of occupied 1D subbands. A detailed analysis has shown that a variation of V,
changes the width as well as the electron density of the constriction.# Both mechanisms move the
Fermi energy Er in the channel through the 1D subbands and whenever it passes a subband
bottom G changes by the quantized amount of 22/,

So far this new conductance quantization has been studied in the linear ballistic transport
regime. Here we report on the non-linear conductance of quantum point contacts. Deviations
from quantization are expected to occur when eV becomes comparable to the subband separation
(with V the applied voltage over the constriction). We have studied the non-linear transport by
measuring a set of current-voltage (/-V) characteristics using V, as a parameter. The main
features of the -V characteristics can be accounted for by a simple qualitative model, which is
based on ballistic electron transport over a potential barrier in the constriction. Related models
have been used in the field of hot electron transport in layered semiconductor structures, and to
explain the breakdown of the Quantum Hall effect. 6-10

The measurements have been performed on a device which is similar to that in Ref. 1 (see
inset Fig. 2.1). The 2DEG of the GaAs-AlxGaj-xAs hetero structure has a transport mean free
path of 8.5 pm and an electron density of 3.6:1015 m-2 resulting in a Fermi wavelength of 42
nm. At a gate voltage Vg = -0.6 V the constriction is just formed in the 2DEG and has its
maximum width, which is approximately equal to the lithographic width of the opening in the
gate (250 nm). Lowering V, reduces the width and at Vg=-22V the constriction is fully
pinched-off. The experiments were done at 0.6 K with dc current biasing. The voltage V across
the constriction is defined as the voltage of the upper contact in the inset of Fig. 2.1 minus the
voltage of the lower contact. The measured voltage is corrected for a background resistance

originating from the two wide 2DEG regions and from the resistance of the Ohmic contacts.1!
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FIG. 2.1. IV characteristics at different values of gate voltage Vg for which the
constriction is pinched-off for small voltage V. The inset shows the sample lay-out.

In Fig. 2.1 the I-V characteristics are shown for several values of the gate voltage Vg, for
which the constriction is pinched-off in equilibrium. For low V the current through the
constriction is zero. At a certain critical voltage V. there is a stepwise increase of the differential
conductance g = JI/dV from zero to a constant value [~ (80 kQ)-1], which is found to be nearly
independent of V. The critical voltage V. however increases strongly with decreasing V. Note
that the I-V characteristics are not anti-symmetric. The asymmetry is considerably influenced by
the choice of zero reference of Vg, which in the experiment has been the lower contact in the
sample lay-out of Fig. 2.1. Changing the zero reference to the upper contact results in a different
gate voltage Vg + V, which gives for V < 0 a lower gate voltage. However, this change in zero
reference does not account for the asymmetry in the curves of Fig. 2.1. This might be due to an
intrinsic asymmetry in the electro static potential defining the constriction. In a second device of
identical design the change of zero reference completely accounted for the asymmetry.

In Fig. 2.2 the I-V characteristics are shown for a range of V,, for which the constriction is
already conducting at a small applied voltage V. For comparison we display G at small V as a
function of V for the lowest two quantized plateaus in the inset of Fig. 2.2a. As can be seen in
the inset, V, ranges from near pinch-off (Vg = -2.10 V) to the onset of the second plateau (Vg =
-2.00 V). In Fig. 2.2a the curves are displayed for gate voltages corresponding to the lower part
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Fig. 2.2. IV characteristics at different values of Vg for which the conductance G
is quantized at 2e/h for small V, indicated by the dotted line. The inset of (a)
shows G as function of Vg in equilibrium and of (b) the breakdown voltage Vpg
as a function of V.
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of the first plateau. For small V they follow the dotted line, which indicates the quantized value
2€2/h of the first plateau. At a certain voltage Vgg, the quantization breaks down and g decreases
from 2e2/h [= (13 kQ)-1] to a lower value [= (60 kQ)-1]. In Fig. 2.2b the I-V characteristics are
shown for gate voltages corresponding to the upper part of the first plateau. Again the curves
follow the dotted line of quantization for small V and deviate from it above a breakdown voltage.
However in contrast to Fig. 2.2a the deviation from quantization is now to a larger value for g [~
(8.7 kQ)-1). A further increase of V reduces g to a value much lower than 2¢2/h. (Note that the
relative effect of V on the gate voltage and hereby the asymmetry is much less in Fig. 2.2 as
compared to Fig. 2.1.) We thus see that increasing V results in the breakdown of the
conductance quantization, as manifested by either an increase or a decrease in g. As can be seen
from Fig. 2.2, the breakdown voltage Vpg (the voltage where g deviates more than 10% from
the quantized value) increases as Vg approaches the center of the first plateau. To illustrate this
we have plotted Vg as a function of V, in the inset of Fig. 2.2b, which shows a triangular
shape with a maximum value of 3.5 meV at Vg = -2.06 V.

To understand the main features in the /-V characteristics we propose a simple model. Apart
from the lateral confinement, the gate voltage V; also gives rise to an electro static potential in the
constriction,%12 which results in a reduced electron density. For simplicity we neglect the
voltage V dependence of Vg. Due to the lateral confinement 1D subbands are formed. On
entering the constriction the bottom of the nth subband rises relative to the bulk 2DEG, as a
combined result of the increased lateral confinement and the electro static barrier. The number of
occupied states is lowest at the maximum of the potential barrier, where the nth subband bottom
has an energy E, constituting a "bottleneck” for the current. Extrapolating an approach valid in
the linear transport regime,3.12 we calculate the net current /, through the constriction carried by
the nth subband by considering the occupation of the right- and left-moving states at the
bottleneck E,,. The right-moving states are filled from E, up to py, the electro chemical potential
at the left of the constriction (provided that y; > E,). Analogously, provided that up > E,, the
left-moving states are filled from E, up to u2, the electro chemical potential at the right. We
assume that the electrons with energy p > Ej are fully transmitted through the constriction. A
difference in occupation between the right- and left-moving states is determined by the applied
voltage V, with eV = y; — 2 (assuming a vanishing electric field outside the constriction),
resulting in a net current. For y; > iz the nth subband carries a net current, which according to

the well-known cancellation of group velocity with density of states in one dimension is given by
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In = 3 (- max uz, Ep)] @1

provided p; > max (up, E,), and I, = 0 otherwise. On increasing V the population of the right-
moving states increases to iy = Er + meV and of the left-moving states decreases to tp = Ep —
(1 - m)eV. Here m is a phenomenological parameter between 0 and 1, describing the fraction of
V, which drops on the left of the bottleneck. Concurrently the fraction (1 — m) of V drops on the
right. At a certain voltage L or y; crosses the subband bottom E,, in this way changing the
contribution df»/dV from the nth subband to the differential conductance g. We find for Ef < E,,

a 0 if1VI<V,=—~Er—Ep)/me
v - 2¢2 2.2)
m- == iflVI>V,
while if Ef > E,
2e2 £ ,
EA y iflVI<V, =(Er-Ep/(1-—m)e
v = 2e2 (2.3)

m 7 f1VI>V,

Eq. 2.2 applies to a subband which in equilibrium is not occupied at the bottleneck of the
constriction (Er < Ep). The differential conductance from this subband increases beyond a
critical voltage V, to a value which is smaller than the quantized value. Eq. 2.3 applies to a
subband which is occupied in equilibrium (Er > Ep). Beyond a critical voltage V.’ the
differential conductance due to this subband decreases from its normal quantized value of 2¢2/h.
Although the expressions for the critical voltages depend on the parameter m, these conclusions
are general and model independent.

To illustrate the consequences of Eq. 2.2 and 2.3 on increasing the voltage we have
schematically shown in Fig. 2.3 the energy of the two lowest subbands at the bottleneck as a
function of longitudinal wavevector ky. Note that positive ky corresponds to a positive velocity.
In equilibrium (V = 0) the subbands are occupied up to the Fermi energy Er. A voltage V across
the constriction gives a difference u; — uz = eV in occupation between the two velocity-
directions (Fig. 2.3a), resulting in a net current. As long as the number of occupied subbands is
the same for both velocity-directions the conductance is quantized. However at larger applied
voltages, y2 can fall below the bottom of a subband. Here g reduces from 2¢2/h to a fraction

m-2¢2/h, as shown in Fig. 2.3b (where Ef is near the bottom of the lowest subband) and as
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FIG. 2.3. Subband occupation at the bottleneck, where the conductance is
determined. Four situations are illustrated for different V across the constriction
(with eV = uj — u2), and for different positions of Er.

observed experimentally in Fig. 2.2a. The subband occupation of Fig. 2.3b can also be reached
from the situation Er < E;, where there are no occupied states in equilibrium. For low voltages g
= 0 as in Fig. 2.1, but at a critical voltage u; crosses E; and g increases to m-2e2/h according to
Eq. 2.2. We emphasize that this explanation for the onset of conductance holds that y; is lifted
above the barrier in the constriction. The constant g above the critical voltage excludes tunneling
through the barrier, which would lead to an exponential dependence of g on V.13 Fig. 2.3¢ and
2.3d correspond to the situation where EF is close to the bottom of the second subband, as in the
experimental figure 2.2b. On increasing V first the second subband starts to be populated (Fig.
2.3c) leading to an increase of g to (1 + m)-2e2/h. A further increase of V causes iz to fall below
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the bottom of the first subband (Fig. 2.3d), which then reduces g to a fraction 2m-2e2/h. This
explains qualitatively the increasing and then decreasing slope in Fig. 2.2b. We note that the
situation of Fig. 2.3d can also be reached directly from Fig. 2.3a, which is actually happening at
Vg =-2.06 V in Fig. 2.2b.

The model presented here in terms of a single phenomenological parameter m does give
qualitative insight, but it is not a realistic description of the complex interdependence of the
electro static potential on V, and V. This is demonstrated by the fact that no universal value for
m is found. If both velocity-directions are occupied the experiment yields m = 0.5. The
maximum of the breakdown voltage Vg at Vg = -2.06 V (for which EF is approximately in the
middle of the first and second subband bottom as can be seen from the insets of Fig. 2.2), also
indicates m = 0.5. However if one velocity-direction is fully depopulated, m has an experimental
value of = 0.2. It would be of interest to develop a more quantitative theory for our observations.

1t follows from Eq. 2.2 and 2.3 that the maximum value of the breakdown voltage Vpp is
equal to the subband separation at the Fermi level. This is independent of the parameter m and
provides a fundamental limit for the conductance quantization. From the inset of Fig. 2.2b we
thus find a subband separation of 3.5 meV, which is consistent with the value obtained from an
analysis of magnetic depopulation.4:14 As we have discussed, the breakdown of the conductance
quantization occurs whenever the number of occupied subbands differs for the two velocity-
directions. We emphasize that this mechanism does not involve any inelastic process or inter-
subband scattering. The triangular dependence of the breakdown voltage (see inset Fig. 2.2b) on
the gate voltage is reminiscent of experiments on the breakdown of the quantum Hall effect,
where a similar dependence of the breakdown Hall voltage on the magnetic field was found .69 A
mechanism for breakdown of the quantum Hall effect also including only elastic processes has
been proposed in Ref. 10.

In this paper we have presented I-V characteristics at fixed V,. Glazman and Khaetskii 13
have recently predicted that the differential conductance as a function of gate voltage at a fixed
finite V should exhibit additional plateaus in between the plateaus at multiples of 2e2/h. We have
found some evidence for these additional plateaus (which follow also from Eq. 2.2), but these
are not well resolved in our device.

In conclusion we have reported the first experimental study on the non-linear behaviour of
quantum ballistic point contacts. We have given a simple model explaining the main features in
the non-linear conductance. The measured /-V characteristics reveal the occupation of the 1D

subbands formed in the constriction, for the individual velocity-directions. Breakdown of the



Nonlinear conductance of quantum point contacts 47

quantization occurs when the number of occupied subbands becomes different for the two
directions. A critical voltage equal to the subband separation at the Fermi level is derived for the

complete breakdown of the two-terminal conductance quantization.
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ABSTRACT

Transport in the fractional quantum Hall effect (FQHE) regime is studied in a two dimensional
electron gas (2DEG) employing adjustable barriers as current and voltage probes. We find a
fractionally quantized Hall conductance for integer filling factor in the bulk of the 2DEG, as a
consequence of the fractional filling factor in the probes. We argue that this effect is the first
manifestation of adiabatic transport in the FQHE. The results are in agreement with a proposed
Landauer-Biittiker formula in which each fractional edge channel contributes a conductance
1/3-€2Ih.
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The similarity in experimental appearance between the integer quantum Hall effect (IQHE) and
the fractional quantum Hall effect (FQHE) is striking in view of their theoretically different
origins. While a single-particle description can be used for the IQHE, the FQHE originates from
a many-body interaction.!

A clear picture of the IQHE in terms of edge channels 2 has recently gained much attention,
both theoretically and experimentally. The transport in the IQHE regime can then be described
within the Landauer-Biittiker formalism.3-5 Recent experiments have demonstrated that edge
channels can be selectively populated and detected by current and voltage contacts.%:7 The
experiment of Ref. 7 shows that scattering between edge channels can be very weak on length
scales of the order of a micrometer. On these length scales the IQHE can be described in terms of
adiabatic transport in edge channels, which can be viewed as independent current channels.

In the IQHE edge channels are located at the boundary of the two-dimensional electron gas
(2DEG), where the Landau levels intersect the Fermi energy. It is not obvious how to generalize
this definition of edge channels to the FQHE, where a single-particle description no longer
applies. The existing many-body theory 1.8 based on Laughlin's trial wave function essentially
considers a homogeneous system. The partially depleted region at the 2DEG boundary, where in
the IQHE regime the edge channels are located, was not considered in these theories for the
FQHE.

In this letter we study the transport along the boundary of a 2DEG having an integer filling
factor, using adjacent current and voltage probes whose filling factors can be varied. From the
observation of a fractional quantum Hall conductance which is completely determined by the
filling factor in the probes, we conclude that adiabatic transport can occur in the FQHE regime.
To describe our results we propose that fractional edge channels exist at the 2DEG boundary,
which can be selectively populated and detected by current and voltage probes, similar to the
edge channels in the IQHE regime.” A Landauer-Biittiker formula generalized to the FQHE
provides quantitative agreement with the measurements. This generalization as well as the
concept of fractional edge channels is supported by a recent theoretical paper by Beenakker.?

Chang and Cunningham 10 recently studied the transmission probabilities between regions with
filling factor v = 1 and v = 2/3, and between regions with v =2/3 and v = 1/3. They showed
that their results could be described by the Landauer-Biittiker formalism if the electron charge e
was replaced by e*, the fractional charge of the quasi-particles in the FQHE. The results of these
barrier resistance measurements are consistent with an interpretation in terms of transmission and

reflection of edge channels, but do not demonstrate adiabatic transport in the FQHE, i.e. the
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FIG. 3.1. Barrier conductances G4 and Gp as a function of gate voltage at a field
of 7.8 T. The curve Gg has an offset for clarity. The double barrier geometry
defined by three different gates is shown in the inset. The arrows indicate the
direction of electron flow along the sample edges.

crucial issue whether or not the fractional edge channels can be treated as independent current
channels on appropriate length scales. To demonstrate adiabatic transport two spatially separated
barriers are required, which can act as injector and detector of edge channels- as in the
experiment presented in this Letter.

The inset of Fig. 3.1 schematically shows the geometry of the double barrier device. A Hall-
bar is etched in a high mobility GaAs/AlGaAs heterostructure to which Ohmic contacts, labelled
from 1 to 6, are attached. The electron density of the 2DEG is 1.8-1015 /m2 and the mean free
path is 9 um. On top of the heterostructure three gates are fabricated. The voltage on the black
center gate is kept fixed at a negative value of -3 V, in this way creating a sufficiently extended
depletion region in the 2DEG to prevent conduction through the two narrow openings (width =
300 nm) separating the different gates (see also Fig. 3.3). A negative voltage V4 or Vg on the
hatched gates (width = 0.5 pm and length = 40 um of the smaller width section ) creates a
potential barrier underneath them, which locally reduces the electron density n; and consequently

the filling factor v = & ng/e B.
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Fig. 3.1 shows the two-terminal conductances 11 of the barriers as a function of gate voltage
measured at 20 mK and at a fixed magnetic field of 7.8 T. At this field the filling factor of the
bulk 2DEG is slightly less than one, which can be seen in Fig. 3.1 at zero gate voltage. The
decreasing gate voltage gradually reduces the conductance of each barrier until pinch-off occurs
at -0.27 V. Although the observed fractional plateaus are not fully developed, the change in slope
at a gate voltage of -0.175 V can be attributed to the 2/3 fractional state, as we will discuss
below.

Fig. 3.2 shows the Hall conductances measured at B = 7.8 T, employing barrier A as the
voltage probe and barrier B as the current probe. The Hall conductance is defined as Gp:14,23
indicating that the current flows from contact 1 to 4 and the voltage is measured between contacts
2 and 3. Fig. 3.2a shows the Hall conductance as a function of equal voltage on both gates A and
B. Although the filling factor in the bulk 2DEG is unchanged in the fixed magnetic field, the Hall
conductance drops from e2/h to 2/3-e2/h at -0.175 V. A similar behaviour is seen if one gate
voltage is kept fixed and the other is varied. In Fig. 3.2b and 3.2c one voltage is fixed at -0.2 V
and in Fig. 3.2d the voltage on gate A is fixed at -0.15 V. The dashed lines in Fig. 3.2a and 3.2d
are calculated from the barrier conductances G4 and Gp (see Fig. 3.1), which will be discussed
below.

The Hall-conductance Gy.23 14 measured by interchanging the current and voltage probe, did
not show the anomalous drop to the 2/3 plateau. Instead Gp;23,14 showed to be independent of
the gate voltage and corresponded with the filling factor in the bulk 2DEG.

To describe our results we propose the existence of fractional edge channels, which follow
different equipotential lines along the boundary of the sample. The adjustable barriers used as
current and voltage probes in the experiment provide a selective coupling to these fractional edge
channels. Coupling to a certain edge channel occurs if this channel follows an equipotential line
which is higher than the probe potential barrier. Fractional edge channels following equipotential
lines which are lower than the barrier potential of the probe are not transmitted over the barrier
and thus will not be populated by a current probe nor detected by a voltage probe. Each
populated or detected fractional edge channel is assumed to contribute 1/3-€2/h to the Hall
conductance (for simplicity only the p/3 fractional channels are considered, with p = 1,2,3).
However, if no coupling of the current probe nor the voltage probe exists to a particular
fractional edge channel and inter-edge channel scattering between the probes is absent, this
channel will be irrelevant for transport measurements. In this way deviations in the measured
Hall conductance from the expected bulk value are a direct demonstration of adiabatic transport in
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HALL CONDUCTANCE (¢2/h)

GATE VOLTAGE (V)

FIG. 3.2. Hall conductances as a function of gate voltage at a field of 78 T. In
(a) both gate voltages V4 and Vg are varied simultaneously and in (b)~(d) one
gate voltage is kept fixed. The rapidly rising parts (dotted) are measurement
artefacts due to barrier pinch-off. The dashed lines are calculated from Egs. 3.1, see
text.
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fractional edge channels over the distance between the current and the voltage probe.

Selective population and detection of edge channels has been investigated in the integer
quantum Hall regime 6.7. Ref. 7 gives a derivation of the Hall conductance depending on the
transmission properties of the current and voltage probes. It follows from this derivation, which
included only integer edge channels, that this Hall conductance cannot be smaller than e2/h, even
when the filling factors of the probes are less than one. The observation of a Hall conductance
below e2/h therefore indicates the failure of the integer formalism. For describing our present
results we include the fractional edge channels proposed above in the derivation of Ref. 7.

Considering ohly the p/3-fractions we obtain

Gy = ;2—’1 max (N;+ Ty, Ny +Ty) if N;# Ny (3.1a)
2 N+Tp(N+T .
on = & M i)T(ITV v) i Nj=Ny=N (3.1b)

Ny and Ny denote the number of fully transmitted fractional channels through the current and
voltage probe respectively. Ty and Ty are the transmission probabilities (0 < 77, Ty < 1) through
the current and voltage probe respectively of the partially transmitted upper channel. Note that
Egs. 3.1 are independent of the filling factor of the bulk 2DEG, but are completely determined
by the transmission properties of the current and voltage probes. Consequently, the fractional
quantization of the Hall conductance is determined by the filling factors in the probe barriers. A
prerequisite for the validity of Eqs. 3.1 is the occurrence of adiabatic transport requiring the
absence of scattering between adjacent channels over the distance between the current and
voltage probe (> 2 pm in our device).

In Fig. 3.3 we have illustrated the electron flow for the case of three fractional edge channels
in the bulk 2DEG. The current probe populates only two of them (¥; = 2, T; = 0) and the voltage
probe detects two fractional edge channels (Ny = 2, Ty = 0). According to Egs. 3.1 the Hall
conductance for this case is equal to 2/3-e2/h, which corresponds to the experimental situation of
Va=Vp=-02V.

To compare the proposed description quantitatively with the measurements we have calculated
the Hall conductance with the measured barrier conductances G4 as voltage probe conductance
and Gp as current probe conductance (see Fig. 3.1), substituted in Egs. 3.1. The results are
shown in Fig. 3.2a and 3.2d (dashed lines) demonstrating a good agreement with the measured
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VOLTAGE PROBE ospum  CURRENT PROBE

FIG. 3.3. lllustration of the selective population and detection of the first and
second fractional edge channels. In this case the third channel does not contribute to
the Hall conductance. The dotted line along the black center gate indicates the
depletion area induced by the center gate voltage, which prevents conduction
through the narrow openings separating the different gates.

Hall conductances. Note again that an integer calculation would give a constant Hall conductance
at e2/h. The Hall conductance in Fig. 3.2a is calculated from Eq. 3.1b with a fixed equal number
of fully transmitted channels (Ny = Ny = 2) and the measured transmission of the third fractional
channel of each barrier between 0 and 1, i.e. 2/3-¢2/h < G4, Gg < €2/h ( Fig. 3.1). Fig. 3.2d
shows that the Hall conductance can also be fixed at a value in between the plateaus, whenever
the largest barrier conductance is fixed and not quantized (in this case Ny < Ny =2, Ty = 0.62
when Vg <-0.175 V). In the region -0.175 V < Vg < 0 V the Hall conductance is determined by
both barrier transmissions (Ny = Ny =2 and Ty, Ty # 0). The curves in Fig. 3.2b and 3.2c can
be compared directly with Fig. 3.1, because in these cases one probe is kept fixed at the 2/3
quantized value. According to Eq. 3.1a, curve (b) in Fig. 3.2 should follow the current probe
conductance Gpg for Vg > -0.175 V (Ny = Ny = 2, Ty = 0 and T # 0) and be equal to 2/3-e2/h
for lower Vg (Ny = 2 > Ny). In Fig. 3.2c¢ the Hall conductance should follow the voltage probe
conductance G4 for V4 > -0.175 V (Ny = Ny = 2, Ty = 0 and Ty # 0) and be equal to 2/3-e2/h
for lower V4 (Nf = 2 > Ny). Comparing both curves 3.2b and 3.2¢ with Fig. 3.1, it can be seen
that there is good agreement between the proposed description and experiment. Similar
measurements as in Fig. 3.2b and 3.2¢ for a number of fixed voltages on one single gate

between -0.19 V and -0.22 V, did not show any dependence of the measured Hall conductance
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on this gate voltage. This indicates that in this range of gate voltage the barrier conductances G4
and Gp are indeed quantized at the 2/3 fraction. The fact that the measured barrier conductances
G4 and Gp do not show well defined fractional plateaus may be related to scattering in the not
fully quantized bulk 2DEG, which is measured in series.

The observation that Gyy:23,14 (i.e. with current and voltage probes being interchanged) is
independent of V4 and Vp and equal to the bulk 2DEG value, can also be understood within the
proposed description. In this case the Ohmic contact 1 (see inset Fig. 3.1) is the relevant voltage
probe,” which will equally couple to all edge channels in the 2DEG. The Hall conductance
should now correspond to the bulk filling factor, as is found experimentally. Note that complete
equilibration over the long distance from probe A to Ohmic contact 1 yields the same result.

The agreement between the proposed description in terms of fractional edge channels and the
experiment demonstrates that adiabatic transport occurs over the distance between the current and
voltage probe. Apparently, the boundary defined by the center gate (black gate in Fig. 3.3) is
sufficiently smooth, such that scattering between the second and third fractional edge channel is
suppressed. The fact that we did not observe a Hall conductance quantized at 1/3 may indicate
that the boundary is not sufficiently smooth to suppress scattering between the first and second
fractional channel. Although the energy separation between the first and second and between the
second and third fractional channels are expected to be equal, the separation in space may differ
when the boundary potential changes nonlinearly. We have studied the influence of the
smoothness of the boundary in more detail in a second sample of identical design, but with a
higher electron density of 2.3-1015 /m2, With -3.0 V applied to the center gate this sample did
not show a deviation of the Hall conductance from the bulk 2DEG value, indicating that all
channels are completely mixed. However, at lower voltages applied to the center gate, the Hall
conductance showed quantization at anomalous values. With -4.5 V on the center gate the 2/3-
fractional value was almost reached. Hall conductance measurements performed on this sample
at a center gate voltage of -4.5 V confirmed the results presented in Fig. 3.2. Apparently a lower
center gate voltage increases the depletion region until a sufficiently smooth boundary potential is
formed at -4.5 V. Here the mixing between the second and third fractional channels is almost
absent. It is difficult to determine quantitatively, including screening, the spatial locations of the
fractional edge channels. However, the strong influence of the boundary potential evident from
this experiment, clearly shows that the properties of the boundary are of prime importance for the
anomalous fractional quantization of the Hall conductance, in accordance with the proposed

description in terms of fractional edge channels.12
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In a recent paper Beenakker ? extends the Landauer-Biittiker formalism to include the FQHE
regime. He also theoretically demonstrates the formation of edge channels in the FQHE regime in
a slowly varying boundary potential. The ith edge channel corresponding to the fractional filling
factor v; contributes (V; - ;.7)e2/h to the conductance, where v;.; is the lower filling factor
corresponding to the next separated edge channel. If only the p/3-states are considered, Egs. 3.1
can be derived from the multi-terminal generalization given in Ref. 9.

In summary, transport in edge channels in the fractional quantum Hall regime has been studied
experimentally by using two closely spaced adjustable barriers as current and voltage probes. By
selectively populating and detecting these fractional edge channels, adiabatic transport over a
distance exceeding 2 um has been demonstrated. These results are in quantitative agreement with
the generalized Landauer-Biittiker formalism for the fractional quantum Hall regime derived in
Ref. 9.
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ABSTRACT
We have studied the electron transport through zero-dimensional (OD) states. OD-states are
formed when one dimensional edge channels are confined in a quantum dot. The quantum dot is
defined in a two dimensional electron gas with a split gate technique. To allow electronic
transport, connection to the dot is arranged via two quantum point contacts, which have
adjustable selective transmission properties for edge channels. The OD-states show up as
pronounced oscillations in the conductance (up to 40% of e2/h), when the flux enclosed by the
confined edge channel is varied, either by changing the magnetic field or the size of the dot. A
prerequisite for the appearance of OD-states is that the transport through the entire device is
adiabatic (i.e. with conservation of quantum numbers), which will be shown to occur at high
magnetic field. The experimental results are in good agreement with theory and show that in the

ballistic quantum Hall regime the net current is carried entirely by edge channels.
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4.1 INTRODUCTION

Advancing technology has made it possible to study the transport properties of a two-
dimensional electron gas (2DEG) in the ballistic regime, for which the device dimensions must
be much smaller than the elastic mean free path. One of the results is the observation of the
quantum Hall effect (QHE) in ballistic submicron structures.! This observation shows that
localized states can not be a prerequisite for the appearance of quantized Hall plateaus. An
alternative approach to explain the QHE is based on the formation of edge channels when a high
magnetic field is applied perpendicular to the 2DEG.2 The description of the QHE can then be
given within the Landauer-Biittiker formalism for electron transport.3 Besides their importance
for explaining the QHE, edge channels have some fundamental properties which are interesting
for further study. The electron transport in edge channels is one dimensional 2 and scattering
between different channels can be extremely small 4.5

Another result of studying ballistic transport is the discovery of the quantized conductance of
short narrow wires or quantum point contacts (QPCs) at zero magnetic field. The conductance of
QPCs is quantized at multiple values of 2e2/h, due to the formation of one dimensional (1D)
subbands in the constriction.6.7 It was shown that in high magnetic fields QPCs can be used as
selective transmitters of edge channels.8 Edge channels with different Landau level index can
either be transmitted or reflected by a QPC. This enables one to study transport occurring in a
selected edge channel, by selective current population or voltage detection of a particular edge
channel.8

We have employed the properties of edge channels and QPCs for the construction of a 1D
electron interferometer, in which discrete zero-dimensional (0D) states are observed.? The
reduction to zero-dimensions is obtained by confining a 1D edge channel in a quantum dot
between two partially transparent barriers. The transparency of the barriers allows a coupling to
the OD-states for electronic transport measurements. The 0D-states show up as pronounced
oscillations in the conductance with maxima occurring whenever the energy of a OD-state
coincides with the Fermi energy. Electron transfer then takes place through resonant
transmission. The experimental results are in good agreement with theory and confirm the
Landauer-Biittiker description of confined electron transport in a quantizing magnetic field.
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4.2 DEVICE DESCRIPTION

Fig. 4.1 shows the schematic layout of our device. A Hall-bar is defined in the 2DEG of a
high mobility GaAs/A1GaAs hetero structure. The 2DEG has a transport mean free path of 9 um
and an electron density of 2.3-1015 m-2. On top of the hetero structure two pairs A and B of
metallic gates are fabricated by standard optical and electron-beam lithographic techniques. A
negative voltage of -0.2 V on both gate pairs depletes the electron gas undemeath the gates and
creates a quantum dot with a diameter of 1.5 pm in the 2DEG. The narrow channel separating
the gate pairs is already pinched-off at this gate voltage. To allow electronic transport, connection
from the wide 2DEG regions to the dot is arranged by two 300 nm wide QPCs. The transport
properties of each individual QPC can be studied by applying the gate voltage to only one gate
pair and zero voltage to the other. The electro static potential landscape at the QPC resembles a
saddle shaped barrier. The height of the barrier Eg can be increased by reducing (making more
negative!) the gate voltage until the QPC is pinched-off at -1 V.

FIG. 4.1, Schematic layout
of the quantum dot with
diameter of 1.5 um and two
300 nm wide quantum point
contacts. The electron flow in
edge channels is shown when
a high magnetic field B is
applied. (a) illustrates adia-
batic transport for unequal
QPCs A and B. (b) A ID
loop is formed when an edge
channel is only partially
transmitted by both QPCs.
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4.3 EDGE CHANNELS AND SELECTIVE TRANSMISSION OF QPCSs

In this section we describe the main properties of edge channels and the selective transmission

of them by QPCs. In a high magnetic field the energy of the electrons is given by:
Ey = (n-phocty gupB +eV(xy) .1)

with n =1, 2, 3,-- the Landau level index, gugB the spin splitting, and V(x,y) is the electro
static potential, which will be nominally flat in the interior of the sample and rising at the
boundary (see Fig. 4.2). Electro static variations due to impurities are ignored because we are
dealing with ballistic samples. The electron states at the left-hand side of the sample are occupied
up to Y, the electro chemical potential of the current source, and their velocity direction is
perpendicular to the cross-section of Fig. 4.2, At the right-hand side the electron states are filled
up to U2, the electro chemical potential of the current drain and their velocity is in opposite
direction. The difference in occupation eV = p; — p2 (determined by the voltage V between
current source and drain) between the two edges results in a net current flowing along the
boundary of the sample. It can be shown 2 that the transport in edge channels is one
dimensional. From the well-known cancellation of density of states with velocity in one
dimension it follows that the net current in each (spin split) Landau level is given by I = e/h(u; —
12). The location of the current-carrying electron states elucidates the name of edge channels.
The ratio current/voltage yields the quantized conductance e2/h contributed by each occupied
Landau level.

ev(x,y)
1l

FIG. 4.2. Occupied electron states (bold) in Landau levels in the presence of a
current flow, illustrating the formation of edge channels at the 2DEG boundary
potential V(x,y) where the Landau levels intersect the Fermi energy Er.
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Although the above model is obviously highly simplified, it leads to some important features
of transport in a high magnetic field. Biittiker 10 has pointed out that backscattering involves
scattering between the opposite sample edges, which is suppressed when the current-carrying
electrons with energies between yj and gy are not connected to the other boundary through
available electron states. This is the case when the Fermi energy is between two bulk Landau
levels (see Fig. 4.2). Experimentally it was also shown that forward scattering between different
edge channels at the same sample boundary is surprisingly low, even over macroscopic distances
much larger then the zero field mean free path.4:5 This means that the transport in edge channels
is primarily adiabatic, i.e. with conservation of quantum index n. The fact that the transport in
edge channels is adiabatic justifies they are being viewed as independent 1D current-channels.

The relevant electron states for transport are only those at the Fermi energy Er. The spatial

location of the current-carrying electrons results from the condition Ef = E,, yielding:
eV(xy) = EG = Ep—(n-ha; 3 gupB )

E¢ is known as the guiding energy.!! Eq. 4.2 implies that edge channels with different Landau
level index n or opposite spin direction, while all located at the sample boundary, follow
different equipotential lines.

Using their controllable barrier height Eg, QPCs can be used as selective edge channel
transmitters. Those edge channels for which Eg < Ep will be reflected by a QPC and those with
Eg > Ep can pass through the QPC. Because only the transmitted edge channels contribute, the

two-terminal conductance G of a single QPC is given by:
e2
G =5 WN+T) 4.3)

Here N denotes the number of fully transmitted channels and T the partial transmission of the
upper edge channel. From Eg = Eg(Vy) and EG = EG(B), it follows that the number of
transmitted channels can be changed by varying the magnetic field or the gate voltage.
Conductance quantization occurs in those intervals for B and Vg where T = 0. From experiments
5.8 we know that Eq. 4.3 holds very well, meaning that QPCs fully transmit the lower indexed
edge channels (which follow higher equipotential lines, see Eq. 4.2) and partially transmit the

upper channel without inducing scattering between the available edge channels.
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4.4 ADIABATIC TRANSPORT IN SERIES QPCS

When two QPCs are placed in series the question arises whether the series resistance in the
ballistic transport regime is just the Ohmic addition of the individual QPC resistances.12 We have
studied this for the geometry of Fig. 4.1, where the two QPCs are connected by a cavity. At zero
magnetic field the incoming electrons will scatter randomly in the cavity and establish a more or
less isotropic velocity distribution. In this way the cavity acts as a reservoir and the series
resistance is just the Ohmic addition of the individual QPC resistances. This situation changes at
a high magnetic field when the electron motion is confined to edge channels. If no scattering
occurs between different channels the transport is adiabatic. The QPC with the highest barrier
and consequently with the lowest number of transmitted channels will form the "bottleneck™ for
the total system. Those channels which can pass the highest barrier in the circuit can also pass
the other barriers (see Fig. 4.1a). The series conductance Gp then is completely determined by
the smallest of the two conductances of the individual QPCs: Gp = min(G4,Gg), where G4 and
Gp are given by Eq. 4.3.

If both QPCs transmit the same number of channels N and the upper edge channel is only
partially transmitted (see Fig. 4.1b), the dot conductance Gp is given by:

Gp = %2 (N +Tp) 4.4)
The partial transmission T2 of the upper edge channel through the 2 barriers in series can easily
be calculated from the transmissions T4 and Tg of the individual QPCs. Ignoring interference
effects which will be considered in the next section, an incoming electron. will be directly
transmitted through both QPCs with probability T4oTp. After making one loop around the dot,
the next probability to be transmitted is TARBRATp (with R =1 —T). A second loop gives
TA(RBRA)?TB, etc. Summing all contributions yields for the total transmission probability:

TATp

Tz = TaTp [1+RaRp + RARp)? +-] = T—p pr (4.5)

Eq. 4.5 is the classical result for the transmission of a single channel through two barriers.
In Ref. 13 a detailed study is described on the transition from Ohmic transport (at B = 0 T) to
adiabatic transport (at B = 1 T) in series QPCs. The measurements at B =1 T and at a

temperature of 0.6 K (so interference effects are averaged out) are shown in Fig. 4.3. The
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FIG. 4.3. Conductances G4 and Gp of the individual QPCs and Gp of the two
QPCs in series demonstrating adiabatic transport at B = 1 T. (a) for equal voltage
on both gate pairs A and B. (b) for fixed -0.7 V on gate pair A and varying the gate
voltage on pair B.

conductances G4 and Gp measured with zero voltage applied to the other gate pair, show (spin
degenerate) plateaus at integer multiples of 2e2/h. The series conductance Gp plotted in Fig. 4.3a
is measured with equal voltage applied to both gate pairs. Gp also shows quantized plateaus
whenever both conductances G4 and Gp are quantized. The step height of 2e2/h demonstrates
adiabatic transport through the series QPC device. Scattering between different edge channels
would yield smaller steps (which is observed for B < 1 T, see Ref. 13). The transition regions

between the plateaus are in good agreement with a calculation from Eq. 4.5 (not shown here). A
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further test if adiabatic transport takes place is shown in Fig. 4.3b. In this experiment the gate
voltage Vg on pair A is fixed at -0.7 V and the voltage on gate pair B is varied. The series
conductance should now be equal to G4 = 4e2/h for Vg >-0.7V and equal to Gp for Vg <-0.7
V. Comparing Fig. 4.3b with 4.3a it can be seen that the series conductance is indeed in good
agreement with Gp = min(Ga,GB). We conclude that the transport through the series QPC
device is adiabatic, whenever transport through edge channels takes place at a sufficiently high

magnetic field.
4.5 TRANSPORT THROUGH (OD-STATES

4.5.1 Theory

In the previous section we derived the classical transmission probability T2 for a 1D double
barrier structure. Here we give a simple quantum mechanical derivation.14 Consider an incoming
electron with a wavefunction ¥;, from the left in the partial transmitted edge channel of Fig.
4.1b. The right- and left-moving waves ¥g and ¥, in the dot are mutually connected through:
Wr=\NTAWin + VRA¥L and ¥| = VRg¥Rexp(if), when both are evaluated at QPC A. 8
denotes the acquired phase after making one revolution around the dot (we neglect the constant
phase-shift due to reflection or transmission by the barrier). With ¥y, = VTg¥g for the
outcoming wave at the right, the transmission probability T2 = |¥,,,/2 / 1¥,|2 is given by:

Ty Tp

Ty = ——
1 — 2 VRARB cosO + RaRp

4.6)

To illustrate Eq. 4.6, the transmission T is shown versus the phase 6 for 3 combinations of the
barrier transmissions T4 and Tg in Fig. 4.4, where it is seen that T2 is periodic in phase with a
period of 2. The amplitude and shape of the oscillations are determined by the values of the
barrier transmissions. For small barrier transmissions the oscillations appear as sharp
(Lorentzian-shaped) peaks with minima approaching 0. The effect of increasing the barrier
transmissions is that the oscillations round off and the minima are lifted. The striking quantum
mechanical aspect of Fig. 4.6 is that the transmission probability of 2 barriers in series can be
larger than the probabilities of the individual barriers. This is known as resonant transmission
and is most apparent for equal barrier transmissions T4 = Tp for which the maxima in 77 are
equal to 1. The maxima are smaller than 1 for asymmetric barrier transmissions T4 # Tp. The

above considerations are general for transport through OD-states in non-interacting systems. The



0D-states 67

1 X TA TB

K -—-0.5 0.5 '\

I —-—0.8 0.2 K

A ~——0.01 0.01 AR

R I

AR I
z I A
o I ! \
— I \ !
(%] | \ ! \
U) ] \ ! \
— / \ / \
= oA /] AN \

T S
< / / \ \\ Y v\
a VAN BN VA W
ot /7 \\ /o \
— Fa “\ // \ N
S/ W\ ;o \
/S O e NN
-7 S - N>~
e J ity J T~
0 L L

1 PHASE/2I 2

FIG. 4.4. Transmission probability T2 versus phase for different barrier
transmissions Ta and Tg. Note that at resonance T can be larger than T4 and Tp.

same properties were deduced from numerical calculations on the transmission of small quantum
boxes in which OD-states are formed at zero magnetic field.!5

In our quantum dot the phase @ is determined by the enclosed flux: 6 = 27xBA/¢,, where A
denotes the area enclosed by the edge channel loop and ¢, = h/e is the flux quantum. Whenever
the enclosed flux @ = BA equals an integer number of flux quanta the transmission T?7 is
resonant. In terms of energies, the resonance results from the formation of 0D-states in the
confined edge channel due to the finite circumference of this 1D loop. Resonant transmission
occurs whenever the Fermi energy EF of the reservoirs coincides with a OD-state. This is most
clear for very weak coupling (T4 = Tg = 0) to the quantum dot. Then the eigenstates of the dot
are nearly undisturbed so that resonant transmission through the discrete 0D-states will give rise
to sharp peaks in the conductance with a maximal amplitude of e2/h.

Note that Eq. 4.6 is exactly the formula for a 1D interferometer. While in our case the phase is
determined by the enclosed flux, Eq. 4.6 also holds for a 1D cavity in between two barriers,
where the product of cavity length and longitudinal wave vector determines the phase 8. This

configuration has been investigated recently by Smith et al.16 in an experiment were they were
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able to vary the distance between the two barriers. Also other related transport experiments have
shown the formation of OD-states due to electro static confinement in all three spatial

dimensions.17

4.5.2 Experiment

The two-terminal conductance measurements presented in this section are all performed at 6
mK. In Fig. 4.5, the two-terminal magneto-conductance Gp of the dot is plotted. Gp shows
quantized (spin-split) plateaus above 1 T at integer multiples of e2/h. Note that despite the two-
terminal measurement no Shubnikov-de Haas resistance oscillations originating from the wide
regions of 2DEG are seen, superposed on the quantized plateaus. This is because the non-
equilibrium population between the transmitted and reflected edge channels by the QPCs is
maintained over macroscopic distances, which was studied in detail in Ref. 4 and 5. At the
plateaus in Fig. 4.5, edge channels are either fully transmitted or completely reflected by the
QPCs (so T2 = 0), which corresponds to 1D transport through the dot. The transitions between
the plateaus (where T2 # 0) correspond to the situation of Fig. 4.1b, where an edge channel is
confined into a loop and where transport through 0D-states is expected.

(e%/h)

CONDUCTANCE

MAGNETIC FIELD (T)

FIG. 4.5. Conductance Gp of the quantum dot as a function of magnetic field
with Vg = -0.35 V applied to both gate pairs. The quantized (spin-splitted) plateaus
indicate 1D-transport, while at the transitions OD-transport is expected.
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To show this we have measured, on an expanded scale, the transition from the second to the
third plateau, where the lowest two channels are fully transmitted (V = 2) and the third channel is
partially transmitted (T2 # 0). First we have plotted in Fig. 4.6a and 4.6b the conductances G4
and Gp of the individual QPCs to enable a comparison with the conductance Gp of the complete
device. The conductance G4 and Gp are obtained with -0.35 V on the corresponding gate pair,
and zero voltage applied to the other pair. The increasing magnetic field gradually reduces the
transmissions T4 and Tp of the third edge channel from 1 to 0. The irregular structure can be
attributed to random interferences in the QPCs.18 The conductance Gp of the dot is shown in
Fig. 4.6c, which is measured with Vg = -0.35 V on both gate pairs. Large oscillations are seen
in between the plateau regions. The amplitude modulation of the oscillations is up to 40% of
€2/h. The fact that the oscillations do not exceed 3e2/h nor drop below 2e2/k indicates that the
oscillations originate from the third edge channel only. The curve plotted in Fig. 4.6d is
calculated from Eq. 4.6 with the measured conductances G4 and Gp substituted for T4 and T.
We will discuss this comparison between theory and experiment in more detail below.

Fig. 4.7a shows the OD-oscillations on an expanded scale, and illustrates their regularity. The
period B, of the oscillations smoothly varies from B, =2.5mT at B=2.5 Tto B, =2.8 mT at
B =2.7T. Fig. 4.7b shows the region of low transmission where due to the weak coupling the
oscillations appear as sharp peaks. The contribution to the conductance of the third edge channel
is nearly zero except when the Fermi energy coincides with the energy of a OD-state. The discrete
narrow peaks clearly demonstrate the resonant transmission through the quantum dot.

OD-states belonging to other partially transmitted edge channels are also observed. In Fig.
4.7c the oscillations are shown which originate from the second channel. A striking feature is
that the period (B, = 5.3 mT at B = 5.1 T) differs from the period of the oscillations belonging to
the third edge channel. Also the observed oscillations from the fourth (B, =2.1 mT at B = 1.85
T) and fifth (B, = 1.4 mT at B = 1.25 T) edge channels differ in their period. The origin of the
difference in period for different edge channels will be discussed below. However, the
observation of a distinct period for each transition again indicates that the oscillations originate
from a single edge channel only. ,

To estimate the energy separation between consecutive OD-states, we have measured the
oscillations for different temperatures and voltages across the sample. The oscillations disappear

above 200 mK and 40 uV, which both lead to an energy separation of about 40 peV.
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FIG. 4.6. Transition from the second to the third plateau of the QPC
conductances Ga (a) and Gg (b) and of the dot Gp (c). Large oscillations are
seen in Gp whenever both G4 and Gp are not quantized. A calculation of Gp from
Eq. 4.6 is shown in (d); see text.
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FIG. 4.7. (a) Enlarged oscillations from Fig. 4.6¢ showing their regularity
(period B, = 2.5 mT). (b) Region of low transmissions of the third edge channel
(GA.GB =2). The discrete conductance peaks demonstrate resonant transmission
through OD-states. (¢) OD-oscillations belonging to the second edge channel (period
By =53 mT).
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In Fig. 4.6 the QPCs are in the transition between 2¢2/h and 3e2/h over the same magnetic
field range, which gives rise to OD-oscillations in the conductance of the dot over the entire range
between the two plateaus. The oscillations of Fig. 4.6¢ are plotted again in Fig. 4.8 (lower
curve). The upper curve is measured with different voltages on the gate pairs, such that the
transition from the second to the third plateau of QPC B is shifted to a lower magnetic field. It
follows from Eq. 4.6 that if T4 = 1 then T2 =Tpg, and if Tg = 0 then T2 = 0; so no 0D-
oscillations are expected when one of the QPC conductances is quantized. The OD-oscillations
are expected only when both QPCs are in the transition between two plateaus (i.e. when 0 <
Ta,Tp < 1). This is observed in the upper curve of Fig. 4.8 where the 0D-oscillations do appear
in the region near the second plateau, but are suppressed near the third plateau.

An alternative way to change the flux is by changing the area enclosed by the confined edge
channel. This is accomplished by varying the gate voltage at a fixed magnetic field. Fig. 4.9a
shows the OD-states for B =2.5 T and a changing gate voltage on both gate pairs. The oscillation

period is 1 mV. For a fixed voltage (-0.35 V) on one gate pair and a changing voltage on the

CONDUCTANCE (e*/h)

MAGNETIC FIELD (T)

FIG. 4.8. Comparison of the 0D-oscillations for roughly equal barrier
transmissions (lower curve where the voltage on both gate pairs is -0.35 V) with
those with differing transmissions (upper curve where the voltage on pair A is -0.35
V and on pair B is -0.47 V). The upper curve has an offset for clarity.
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other pair the observed period is 2 mV, as can be seen in Fig. 4.9b. Assuming that in the latter
case only half of the area in the dot is effected, we conclude that a variation in gate voltage
changes the area enclosed by the edge channels. Thus our device also provides an electro static

control of the resonant transmission through OD-states.

4.5.3 Discussion

Eq. 4.6 shows that the envelope of the OD-oscillations is determined by the coupling to the
quantum dot through the barrier transmissions T4 and Tg. Only for very weak and equal
coupling (T4 = T =~ 0) the amplitude modulation can approach 100% of e2/h. To illustrate this
we have calculated the envelope function from the measured conductances G4 and Gg (see Fig.
4.6a and 4.6b) of the individual QPCs. The outer curves in Fig. 4.10 are calculated for cos@ = 1
(upper curve) and cos8 = -1 (lower curve) substituted in Eq. 4.6. This envelope function would
be the amplitude modulation of the OD-oscillations at zero temperature. The conductance Gp

calculated from the measured G4 and G and taken temperature averaging into account, is also
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FIG. 4.9. Conductance oscillations as a function of gate voltage for a fixed
magnetic field B = 2.5 T. In (a) the voltage on both gate pairs is varied (period = 1
mV) and in (b) the gate voltage on one pair is kept fixed at -0.35 V and varied on
the other gate pair (period = 2 mV).
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plotted in Fig. 4.10. We have included temperature averaging in the calculation with the
expression Gp(T) = | Gp(E)-[0f/0E)-dE in which fE,T) is the Fermi distribution function and
Gp(E) the energy dependent conductance at zero temperature. The latter can be obtained from
Eq. 4.4 and 4.6 by noting that a change in phase of 2rn corresponds to a change in energy of 40
peV. Note that averaging of Eq. 4.6 over a large energy range (larger than the energy range
corresponding to a change in phase of 2r) gives the classical result of Eq. 4.5. We have chosen
a fixed period of 3 mT in the calculation and an effective temperature of 20 mK, which is the
sample temperature (6 mK) plus a contribution from the voltage (= 6 V) across the sample. The
difference between the outer curves and the oscillating curve illustrates how the finite temperature
of 20 mK affects the OD-oscillations. The temperature averaging is strongest around 2.6 T where
due to the weak coupling (T4,Tp = 0) the oscillations have a peak shape. Temperature averaging
is less effective on the rounded oscillations between 2.4 and 2.5 T (where T4,Tg = 0.5). The
calculated conductance Gp of Fig. 4.10 is also plotted in Fig. 4.5d where it can be seen to be in
good agreement with the measured conductance. The exact modulation is not reproduced in the
calculation, which is probably due to a slight mutual influence when voltages are applied to both

gate pairs.
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FIG. 4.10. Calculation from Eq. 4.6 of the amplitude modulation of the 0D-
oscillations at 0 K (outer curves) from the measured conductances G4 and Gp
(taken from Fig. 4.5a and 4.5b) and of the conductance Gp for which an energy
averaging is taken into account corresponding to 20 mK.
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The conductance oscillations described in this paper are reminiscent of the Aharonov-Bohm
effect observed in small metal 19 and semiconductor rings.20 However, in these systems the
electrons are already confined in a ring in the absence of a magnetic field. The conductance of
such rings oscillates as a function of B with a period ¢,/A (A is the fixed area enclosed by the
ring) even if the wires are not 1D. In semiconductor rings this Aharonov-Bohm effect quenches
for high magnetic fields when edge channels are formed in the wires.20 In contrast to this, edge
channels are the starting point for the occurrence of oscillations in the quantum dot. The period
of our oscillations is also not simply determined by the dot area because of the change in location
of the edge channels when the magnetic field is varied. The change in radius Ar of the edge
channel loop follows from Eq. 4.2 as: Ar = AV(x,y)/E = AEg/(eE) which varies with the
magnetic field, differs for different indices » or spin direction, and depends on the "hardness” of
the boundary potential given by the radial electric field E. Assuming circular symmetry for the
edge channel loop we can write the change in enclosed flux A resulting from a change in field
AB as:

B2
Ap = ABrr2) = w2 AB +B 2nr Ar = (nr? + eT’"%% ) AB @.7)

Evaluation of Eq. 4.7 with 7 = 750 nm, B = 2.5 T and a rough estimate E =~ 104 - 105 V/m
shows that the second term (which is negative!) can be of the same order of magnitude as the
first term.2! The observed period B, = §,AB/AD is therefore not simply determined by the
enclosed area. The observation of distinct periods at different transitions, well separated by
quantized regions, shows that the oscillations originate from single 1D edge channels. This
conclusion provides strong evidence that in the ballistic quantum Hall regime the net current is

completely carried by edge channels.
4.6 CONCLUDING REMARKS

Edge channels in combination with QPCs provide a simple and elegant system for studying
electron transport of reduced dimensionality. Using the adjustable barriers of QPCs we have
realized a 1D electron interferometer. The rigidity of edge channels is illustrated by the
occurrence of adiabatic transport through the series QPC device. Single electron OD-states are
formed when a 1D edge channel is confined between two barriers. The Fermi energy can be

tuned through the OD-states by varying the magnetic field and/or the gate voltage. The resonant
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transmission through OD-states is clearly observed as regular oscillations in the conductance.
Each oscillation corresponds to the (de)population of an edge channel by a single electron. The
experiment confirms the edge channel description of transport in the ballistic quantum Hall

regime.
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ABSTRACT
We have studied the magneto-transport properties of an artificial one dimensional crystal. The
crystal consists of a sequence of 15 quantum dots, defined in the two dimensional electron gas of
a GaAs/AlGaAs hetero structure by means of a split-gate technique. At a fixed magnetic field of
2 T, two types of oscillations with different amplitude and period are observed in the
conductance as a function of gate voltage. A simple model demonstrates that the oscillations arise
from the formation of a mini-band structure in the periodic crystal, including energy gaps and

mini-bands which contain 15 discrete states.
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5.1 INTRODUCTION

One of the basic principles of solid state theory is the formation of an energy band structure in
a regular crystal. The coupling between atomic states in a perfect crystal results in a collective
state which is characterized by energy bands separated by energy gaps. The conductivity
properties of a solid strongly depend on the location of the Fermi energy in the band structure.
The solid is an electrical insulator (at 0 K) if the Fermi energy lays within an energy gap or an
electrical conductor if the Fermi energy is within an energy band.

Early in the seventies, Esaki and Tsu ! proposed that the periodic potential in a structure of
alternating layers of different semiconductor alloys can form a superlattice with a period much
larger than the period of the host atomic lattice. Besides the band structure of the atomic crystal,
it was shown that the superlattice can give rise to a second band structure in the same material.
Due to the smaller Brillouin zones, bandwidths and gaps, the latter was called a mini-band
structure. A few years later Esaki and Chang 2 found experimentally a negative differential
conductance in the non-linear transport properties of a vertically grown superlattice, which was
argued to be a direct consequence of the mini-band structure. Since these early works, much
effort has been put in transport and optical studies on grown superlattices.

A disadvantage of grown superlattices is that the mini-band structure and the Fermi energy are
fixed after the growing process. This leaves only non-linear methods to probe the electron states
in the mini-band structure, for instance by measuring non-linear transport properties 2 or by
optical excitation of electrons into higher mini-bands and measuring the resulting luminescence
spectra.3 We have used a different technique to induce the periodic potential, which allows us to
tune the Fermi energy through the mini-band structure. We have fabricated a lateral one
dimensional (1D) crystal in a two dimensional electron gas (2DEG) by means of electro static
depletion induced by metallic gates on top of a GaAs/AlGaAs hetero structure. The ID crystal
consists of a sequence of 15 coupled quantum dots, in which the spatial quantization is realized
in all three directions. This in contrast to the so-called 1D superlattices,!-3 where the periodic
potential is in one direction and the electron motion is still free in the two other directions.

In a single quantum dot, discrete electron states can arise either due to the lateral electro static
confinement 4-6 or by a combination of this with a magnetic field.” In a series of coupled
quantum dots, these zero dimensional (0D) states are expected to develop into mini-bands
separated by energy gaps. As we will discuss in this paper, the linear conductance reflects the

formation of a mini-band structure in such an artificial 1D crystal, when the Fermi energy is



1D crystal 81

tuned through the bands by varying the voltage on the gates.8 The outline of this paper is as
follows. In section 5.2, we will illustrate theoretically the formation of a band structure from a
transport point of view. The device with 15 coupled quantum dots will be discussed in section

5.3 and the experiments follow in section 5.4. Some conclusions are summarized in section 5.5.
5.2 FORMATION OF A BAND STRUCTURE IN A FINITE 1D CRYSTAL

To calculate the band structure of an infinite crystal one can incorporate the translational
invariance of the lattice in the electron wave function by means of Bloch's theorem. In a finite
crystal, consisting of a small number of unit cells, the translational invariance is broken and the
proper boundary conditions have to be included in a calculation of the electron states. Different
methods have been used to calculate the band structure of a finite periodic structure.9-12 We will
illustrate the formation of a band structure in a finite 1D crystal with on both sides infinite 1D
leads, by calculating the transmission probability Ty of an electron wave through a 1D chain of
N barriers at periodic positions.8:13 To illustrate the procedure, an explicit derivation for the two
barrier system (or single quantum dot) shown in Fig. 5.1a will be described in detail, while for
the N barrier system of Fig. 5.1b we refer to Ref. 13 for a full derivation. The starting point is

the scattering matrix S = (!, ¥/) which relates the outgoing waves from a single barrier to the
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FIG 5.1. Schematic representation of an electron wave in a 1D 2-barrier (a) and
N-barrier (b) system.
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incoming waves. For an asymmetric barrier in a magnetic field (which breaks time reversal
symmetry) the complex transmission and reflection amplitudes ¢ and r for an incoming wave in
one direction differ from the amplitudes ¢’ and r* for an incoming wave from the opposite
direction. For simplicity we will assume symmetric barriers which gives t=1t"and r = r".
Conservation of current yields the condition that § is unitary, which leads to the relations: #* +
rr* =1 and #/t* = -r/r*. To allow unequal barriers we label them by A and B. The right- and left-
moving waves in the cavity between the two barriers at x = 0 in Fig. 5.1a are given by: ¥g =
taWin + ra¥L and ¥ = rg Wg-exp(if), in which @ is the phase acquired by an electron wave
after travelling back and forth once within the cavity. With the outgoing wave ¥, = tp ‘¥ one
finds for the transmission amplitude 12 = ¥,/ ‘¥, through the two barriers:

IA IB
b = 5.1a
2 1—r4 rp exp(if) ( )

and with the definitions T4 = ta24”*, RA = rara”, Tg = tgtg”, and Rp = rgrg” for the
transmission probability T2 = 2™

- TaTg
1 — 2VRsRp-cos(0 + 6,) + RoRp

T (5.1b)
6, is the total phase shift after reflection at the barriers A and B, and follows from the imaginary
parts of r4 and rp. The striking aspect of Eq. 5.1b is that even with the single barrier
transmissions T4 = Tg < 1, the two barriers in series have a transmission T2 = 1 whenever the
total phase @ + 6, is an integer times 2. This aspect is well-known as coherent resonant
tunneling. In terms of energies, the cavity forms a confined 1D system in which discrete 0D-
energy-states arise (when T4 = Tp = 0), similar to particle-in-a-box states. When the energy of
an incoming electron coincides with a OD-state, the electron is transmitted with probability equal
to 1.

For N barriers in series (see Fig. 5.1b), we calculate the transmission Ty = tytn* from a

numerical solution of the recursive formula for the transmission amplitude zy :3:13

LIN-]
IN = 5.2)
N 1—rrn.;exp(if) (

in which ¢ denotes the transmission amplitude of a single barrier. The current conservation

relations also hold for #y and ry.
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FIG. 5.2. Transmission Ty versus phase 0/2x of a periodic 1D chain of N
barriers, calculated from Eq. 5.2 with single barrier transmissions T = 0.90.

16 BARRIERS T=0.90

: L
0
| T=0.0025
0 1
2

TRANSMISSION

i L

PHASE/2n

FIG. 5.3. Transmission Ty versus phase 0/2n of a periodic 1D chain of 16
barriers, for different single barrier transmissions T.



84 chapter 5

In Fig. 5.2 the transmission Ty versus phase 8 is plotted for a different number N of equal
barriers with transmissions T = 0.90 (the constant phase shift 8, is ignored). The lowest curve
with N = 2 oscillates with a period 2n. The two maxima correspond with consecutive OD-states.
The oscillations in T3 are broadened due to the large coupling (T is nearly 1) to the OD-states.
For small barrier transmission (T = 0) these oscillations appear as sharp Lorentzian-shaped
peaks. Fig. 5.2 shows that if the OD-states of two adjacent cavities (N = 3) are coupled, an extra
oscillation comes in. The two maxima which correspond to the OD-states of the two coupled
cavities, are seen to group together. In band structure theory this is referred to as the symmetric
and anti-symmetric superposition of the independent OD-states in two uncoupled cavities. The
anti-symmetric superposition shifts a little up in energy (or in phase in our calculations), while
the symmetric superposition goes down in energy relative to the energy of the independent OD-
states. A further increase of the number of barriers N shows that the number of oscillations
increases accordingly. As can be seen in Fig. 5.2, a change in phase of 27 contains a number of
oscillations equal to the number of cavities N — I. The oscillations form bands of high
transmission Tx. These bands are separated by regions of low transmission Ty, which are
associated with the gaps.

In Fig. 5.3 the transmission Ty is shown for N = 16 barriers, but now for three different
values of the transmission T through the single barriers, illustrating the effect of the coupling
between the adjacent cavities. Weak coupling (i.e. small T) results in a band structure with
narrow bands and large gaps ("tight-binding regime"), while strong coupling (i.e. T nearly 1)
yields wide bands and small gaps ("nearly-free-electron regime"). In an energy picture, the
bands of high transmission correspond to a situation where the Fermi energy is located in an
energy band, while in the regions of low transmission the Fermi energy is in a gap. So, when
the Fermi energy of the system is varied, the transmission through a finite crystal reflects the
energy gap as well as the discrete states forming the so-called mini-bands. Note that in a normal
crystal, the discrete states in the energy bands are usually unnoticeable due to the large number of
participating atoms.

The transmission Ty is directly related to the conductance G by the Landauer formula: G =
Tn-e2/h, which therefore also reflects the band structure if one is able to vary experimentally the
phase 6. In zero magnetic field, the phase is given by: 8= 2n(2a/AF), i.e. it is determined by the
number of half Fermi wavelength's Ar/2 matching the distance a between adjacent barriers.
Smith et al.5 have reported the observation of OD-states for B = 0 in a single quantum dot device

in which they were able to vary the distance a. However, in a device with more than two barriers
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this is experimentally very difficult to realize. An alternative for varying the phase 8 is by
changing the Fermi energy and thereby Ar. This has been done recently by means of a gate
covering a single quanturn dot.6

We have chosen a different approach to vary the phase 6. We have used the fact that in a high
magnetic field the current carrying electron states of a 2DEG are confined to 1D edge channels,
which are located at the sample boundary.14 It has been shown that on short distances of order
Hm, the scattering between edge channels is absent in a sufficiently high magnetic field.15 Edge
channels can therefore be treated as independent 1D current channels, which make them an ideal
model system for confinement to zero dimensions.” Moreover, they form the physical analog of
our 1D model. By confining an edge channel in a quantum dot it forms a 1D loop (see Fig. 4.1).
Due to the Aharonov-Bohm effect, an electron which makes one revolution around the dot
acquires a change in phase of 2n(¢/¢,), where ¢ = BA is the magnetic flux, A denotes the area
enclosed by the edge channel loop and @, = h/e is the flux quantum.!6 In this case of a high
magnetic field, the phase 6 can be varied either by changing the magnetic field B or the enclosed
area A. For a single quantum dot this corresponds to moving the Fermi energy through the 0D-
states while for coupled dots the Fermi energy is tuned through the band structure. The
correspondence between the phase 6 = 2n(2a/Ar) at B =0 and 6 = 2rn¢/¢, at B # 0 has been
pointed out by Biittiker et al.17 for a 1D ring structure, which encloses an Aharonov-Bohm flux
¢ =BA.

5.3 THE 1D CRYSTAL DEVICE

Our device consists of an array of 15 quantum dots, which are electro statically defined in a
two dimensional electron gas (2DEG) by means of two metallic gates on top of a GaAs/AlGaAs
hetero structure. Fig. 5.4 shows a scanning electron micrograph of the gate geometry of which
the dimensions are given in the inset of Fig. 5.6. The ungated 2DEG has an electron density of
2.7-1015 m-2 and a transport mean free path of 10 um. A negative voltage of -0.44 V on the
gates, depletes the electron gas underneath the gates and forms a corrugated ballistic channel in
the 2DEG of 3 um length and a width alternating between 250 and 400 nm. The voltage Vg1 0on
the first gate defines the depletion region around the "fingers" (in total 16 fingers or
correspondingly 15 quantum dots) at a period of 200 nm. The effect of lowering (making more
negative) the voltage Vg2 on the second gate is threefold. The increasing depletion area around

the second gate reduces the coupling between adjacent dots, reduces the area of each dot, and
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The corrugated gate contains 16 fingers in total. The white marker indicates 1 pum.

lowers the Fermi energy in the conducting regions. The detailed shape of the depletion region in
the 2DEG is unknown, but presumably resembles a periodic (asymmetric) saddle-shaped electro

static potential with the maxima in the narrow regions.

5.4 TRANSPORT MEASUREMENTS

We have performed conductance measurements as a function of gate voltage Vg, on the
second gate, for several fixed values Vg7 on the first, finger gate, and for several fixed magnetic
fields. The measurements are performed at a temperature of 10 mK with a standard lock-in
technique using ac current biasing of 0.2 nA rms. At zero magnetic field no evidence has been
found for the formation of a band structure. Nor did we find quantized plateaus in the
conductance resulting from the transverse confinement in the corrugated channel. The
quantization, which would indicate adiabatic transport, is destroyed due to inter-subband
scattering either by the fingers or by potential fluctuations in the 3 um long channel.!8 At a

constant magnetic field of 2 T we find quantum Hall plateaus at multiples of e2/h in the
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conductance G as a function of gate voltage Vg, The effect of a magnetic field is to establish
adiabatic transport through the corrugated channel, as is known from theoretical 19 and
experimental 20 work on two quantum point contacts in series. In the case of adiabatic transport,
the subbands can be treated as independent 1D edge channels. The scattering now only takes
place in a controlled way within a single edge channel at the potential maxima defined by the
fingers. This periodic scattering corresponds to Bragg reflection and was modelled by the barrier
transmissions T in section 5.2.

In Fig. 5.5 the first (spin-resolved) conductance plateau is shown for several fixed voltages
Vg1 on the finger gate. Below the first plateau (i.e. G < e2/h) large oscillations are seen, while in
the plateau region deep downward peaks enclose smaller oscillations. Above the plateau only
downward peaks are seen, which are clearly separated. Some of the deeper peaks in Fig. 5.5 are
marked to indicate their shift when the voltage Vy is varied.

The plateau region of the curve with Vg7 =-0.45 V is measured and shown enlarged in Fig.
5.6. As can be seen, the two deeper peaks enclose 15 oscillations, which exactly corresponds
with the number of quantum dots in the 1D crystal. This simple counting comparison between
the number of oscillations and the number of quantum dots, shows that the observed oscillations
can be associated with the formation of a mini-band structure in the periodic 1D crystal device.
The deeper peaks correspond to the energy gaps and the smaller oscillations with the discrete
states, which form the mini-bands. This interpretation is supported by the calculations shown in
Fig, 5.2 and 5.3. The formation of energy gaps is also indicated by the downward peaks above
the plateau region in Fig. 5.5. The spacing between these downward peaks differs from those in
the plateau region, which may be related to additional peaks originating from the second
subband.

In the plateau region the average conductance is nearly constant (here the transmission
probability of the lowest subband through a single barrier is nearly equal to one) indicating that
the coupling is approximately constant, which roughly yields constant energy gaps. The effect of
lowering the gate voltage Vg, here is mainly the decrease in Fermi energy and the reduction in
dot area. Note that the reduction in area results in larger energy separations which increases the
bandwidth. Both effects move the Fermi energy through the mini-band structure. From going
vertically through Fig. 5.3 one can see that when the transmissions T are varied relatively fast
compared to the phase 6, the Fermi energy also moves through the mini-band structure. This

leads to the large oscillations below the first plateau, where T changes from 0 (at pinch-off) to 1.
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gate. Corresponding peaks are marked. The curves have been offset for clarity.
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2Tand Vg1 = -0.45 V on the first gate. The inset shows schematically the gate
geometry; the dashed lines indicate the depletion regions in the 2DEG. The upper
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The effect of irregularities on the mini-band structure can also be seen in Fig.5.5. For the
curves of Vg = -0.45 V and -0.48 V the number of oscillations is 15 in accordance with the
number of dots. However, the curve of Vg7 = -0.46 V shows 16 (reproducible) oscillations and
in the curve of Vg7 = -0.47 V the gap marked by "+" is not seen. The disappearance of the gap is
presumably caused by irregularities, which introduces mixing between mini-bands. The 16
oscillations in Vg7 = -0.46 V cannot be understood from the number of quantum dots, not even
when the dots are considered to be unequal. Additional scattering at an impurity or at the exit or
entrance of the channel may be the cause for this extra oscillation. The smaller oscillations on the
left of the mark "*" in Fig. 5.1, indicate another discrete mini-band, although less regular. The
influence of irregularities on the mini-band structure will be discussed further below. The
oscillations reproduce very well if the sample is kept cold (< 4 K), but not after warming up to
room temperature. So far the oscillations have only been studied in one 16-finger sample. In a 1-
finger sample of identical design, we found that the conductance versus Vg, shows quantized
plateaus at zero magnetic field, which shows that a single finger acts as a quantum point
contact.18 In a 2-finger sample we have observed structure at 2 T with a period of AVg2 = 25
mV. This period corresponds to the energy difference between consecutive OD-states in the
single quantum dot and is approximately the same, as one would expect, as the gate voltage
difference between the two downward peaks in Fig. 5.6. From these different finger samples we
can conclude that the additional smaller oscillations in Fig. 5.5 and 5.6 indeed originate from the

coupling between the quantum dots.
5.5 DISCUSSION AND CONCLUSIONS

To simulate our conductance measurements, using Eq. 5.2 and G = Ty-¢2/h, we varied the
phase ¢ and the transmission amplitude ¢ simultaneously. In this way the effect of the gate
voltage on the confining potential and on the coupling between adjacent dots is simulated. The
transmission 7y for N = 16 is plotted as a function of phase in Fig. 5.7, where the lowest curve
is the simultaneously varying transmission probability ¢-£* of a single barrier. The two calculated
transmissions illustrate the effect of deviating barriers. In the upper curve the first and last barrier
have a smaller transmission amplitude by a factor of 0.999. We found that this kind of
irregularity has a strong effect on the depth of the gaps. While for equal barriers the minima of
the gaps approach zero, this small irregularity lifts the minima to values similar as found

experimentally. Additionally, in the curve in the middle of Fig. 5.7, the barrier in the middle of
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TRANSMISSION Ty
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FIG. 5.7. Calculations from Eq. 5.2 of the transmission TN as a function of
phase 0 of a 1D chain of N = 16 barriers. The lowest curve shows the
simultaneously varying transmission probability T = t-t* through a single barrier. In
the middle curve all barriers have equal transmissions T except the first and last
barrier have Tfyg = Tiast = 0.999-T. In the upper curve the barrier in the middle has
in addition a smaller transmission Tmjddle = 0.97-T.

the crystal is reduced by a factor 0.97. The effect is that the crystal slightly breaks into two parts.
This is reflected in the smaller oscillations which group together in pairs of two, very similar to
the pattern seen in the experimental curves of Vg7 =-0.46 V and -0.47 V in Fig. 5.5. We note
that for an asymmetric barrier in a magnetic field, both amplitudes ¢ and r are unequal to the
amplitudes ¢’ and 7' for a wave in the opposite direction. Incorporating this in the calculation we
found that this also affects the depth of the gaps. We conclude that our 1D model can account for
all features observed in the experimental curves. Further calculations show that if the amount of
disorder is increased (accomplished by variations in the individual ¢ 's and €'s), the oscillations
become more irregular and eventually the gaps disappear.13

More recently, several authors have calculated the transmission probability of a finite

corrugated channel at zero 21,22 and non-zero magnetic field.23.24 A special feature of our
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magnetically induced band structure is that the energy dispersion is asymmetric yielding skew
mini-bands. This is a direct consequence of the fact that the time reversal symmetry is broken in
a magnetic field.23.24

These calculations and our 1D model are all within the independent electron approximation,
ignoring interaction effects as for instance screening. Because of the absence of states in the
gaps, it may be possible that the Fermi energy does not change continuously with the gate
voltage, but jumps from the top of a mini-band to the bottom of the next one. This may result in
observing smaller gaps. It is, however, difficult to estimate screening effects in small low-
electron-density samples. Another electron-electron interaction effect ignored here is the
occurrence of charging effects. Experimentally, we have checked that the two periods in the
mini-bands in the plateau region scale with magnetic field. This confirms the band structure
interpretation and rules out an explanation in terms of single electron charging. However, when
the conductance is made smaller that the plateau value, this scaling gradually disappears. For a
conductance much smaller than e2/h, we have found clear evidence for charging effects by
observing a Coulomb staircase in our 1D crystal.25 This shows that a gradual transition exist at
lower conductances to a regime where charging effects dominate transport. Charging effects will
be the discussed in detail in chapter 7.

In summary, the transport properties of the 1D crystal reflect the formation of a mini-band
structure of which the discreteness is clearly observable. In contrast with the vertically grown
superlattices, the electro static definition of the 1D crystal by means of a split-gate allowed us to
tune the Fermi energy through the mini-band structure. The fact that the mini-band structure
originates from a modulation of the lowest 1D magnetic subband makes this device a true 1D
crystal. The mini-band structure is reflected in the conductance, in a way that the 1D crystal is
electrically insulating or conducting whether the Fermi energy is in a gap or a mini-band
respectively. A simple 1D model can account for the observed features in the conductance and

illustrates the formation of a band structure in the solid state in terms of resonant transmission.
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CHAPTER 6

Quantized Photocurrent in a Single Exciton Pump

Leo P. Kouwenhoven
Faculty of Applied Physics, Delft University of Technology
P.O.Box 5046, 2600 GA Delft, The Netherlands

ABSTRACT
We propose that a vertical quantum dot under illumination of a pulsed laser can operate as a
single exciton pump. The photocurrent resulting from the creation of a single exciton per laser
pulse, is equal to the electron charge times the frequency of the laser pulses. The experimental

conditions for realizing such a single exciton pump and its applications are discussed.
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The ability to control the transport of single electrons is a fascinating new field of research,
not only from a fundamental point of view, but also for obtaining an accurate current standard
and for various device applications. So far, most of the effort has been put in the control of
single electron transport through small metallic tunnel junctions. Due to the small junction
capacitance C (of order 10-16 F), the tunneling of an electron alters the energy of the system bya
charging energy E. = 2/2C (of order meV) which exceeds the thermal energy at low temperature
(T < 1 K). This can result in a Coulomb blockade for other electrons to tunnel.! Geerligs et al.2
were able to modulate the Coulomb blockade with a radio frequent (RF) signal, resulting in the
passage of one electron per cycle through their so-called single-electron-turnstile device. The
current [ was found to be given within the error of the experimental set up (~0.3 %) by I = ef,
where f is the frequency of the RF signal. In a similar system, Pothier et al.3 have realized a
single-electron-pump. Two phase shifted RF signals were used to generate a current I = ef, even
for zero bias voltage across the junctions. In a pioneering experiment of Delsing et al.,4 single-
electron-tunneling oscillations were phase-locked with a RF signal, also resulting in a current [ =
ef. A semiconductor variant of the single-electron-turnstile, which is based on oscillating tunnel
barriers, has recently been discussed by Odintsov 5 and realized by Kouwenhoven et al.6

Besides the above experimental realizations of passing electrons one-by-one, Niu 7 has
proposed a system in which the velocity of a Bloch-wave can be controlled. Guinea and Garcia 8
proposed that with an oscillating tip of an STM near a metallic grain, one could realize the
passage of one electron per cycle from the tip to the grain. The above experiments and proposals
are all based on a frequency modulation of the conduction band. In this letter, we consider an
alternative way to obtain a frequency determined current. We propose that due to the creation of a
single exciton in a semiconductor quantum dot per cycle of a pulsed laser, the resulting
photocurrent is determined by the frequency of the laser pulses. We will first point out the
general operating principles of this single-exciton-pump and specify the details later.

The non-linear transport properties of a quantum dot have been studied by Reed et al.? Their
quantum dot was defined by etching techniques in a vertical layered heterostructure, consisting
of n*GaAs (contact), AlGaAs (tunnel barrier), InGaAs (quantum dot), AlGaAs (tunnel barrier),
and n*GaAs (contact). The structure observed in the I-V characteristics was identified to result
from zero dimensional (0D) electron states with energy separations of about 25 meV. Fig. 6.1a
shows schematically the bottom of the conduction band and the top of the valence band vertically
through the quantum dot structure of Fig. 6.1b, whose optical properties we discuss in this
letter. In the regions I, I, and III of Fig. 6.1a, the Fermi energy Ef is taken to lie in the gap. The
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FIG. 6.1. (a) Bottom of the conduction and top of the valence band, which
defines a quantum dot (region I) between two barriers (regions Il) and separated by
two buffers (regions Ill) from the two electron reservoirs (regions IV). The bands
are slanted by a voltage between the reservoirs. (b) Pilar of different layers of
semiconductor alloys, which has the band gap modulation of (a), see also Reed et
al®
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energy states in the quantum dot (i.e. between the barriers) are quantized in all three spatial
directions and are therefore OD electron states. The OD-states can be doubly occupied due to
spin-degeneracy. We denote the energy of the nth OD-state by E,. The OD-states can be
populated by applying a large electric field over the structure, which lifts the Fermi energy of one
of the contacts above the conduction band in the buffer region, allowing electrons to tunnel
through the barrier into the dot. This is the way Reed et al.? observed the OD-states,
demonstrated by resonant transmission occuring when Ep was lined up with the discrete energy
of a OD-state.

An alternative way to populate the OD-states is by creating excitons with a laser.10
Information about the confined exciton energy states can be obtained by measuring the
luminescence spectrum.!! We take the energy of the laser Av; = E7 + E'; + Egqp— Ep such that
at most two excitons can be created in the lowest energy state, while the higher states
corresponding to E, > stay empty. The binding energy Ep includes the Coulomb interaction
between the electrons and holes, which gives a correction to the single-particle discrete states E,
and E,". Due to stimulated emission, which is of equal probability as the absorption of a photon,
the mean occupation is only one exciton. The statistical deviation from this is small if many
events are considered. For the moment we take the occupation to be exactly one and return to this
point later.

We denote the time for an electron to tunnel to the left as 7; and to the right as 7. Similar, 7}
and 7’ denote the tunnel times for the hole (we neglect the dependence of the times 77, and 777,
on the discrete energies E,, and E’,). If the bands are slanted by a voltage across the structure, as
indicated in Fig. 6.1a, the excited electron has a preference to tunnel to the right (7, « 7).
Similarly, the hole will preferably tunnel to the left (7'} « 7%). The energy Ep to break up the
exciton is delivered by the voltage source. With a continuous operation of the laser, the resulting
photocurrent is of order e/(Teyc + Tr + 7'f), Where Ty is the time to create an exciton. It is
important to note that this current from the left- to the right-reservoir results from the pumping
action by the laser in the quantum dot only. The excitations in the reservoirs relax in the same
reservoir, if the relaxation length is much shorter than the distance a of the buffer regions (the
regions III in Fig. 6.1), which separate the quantum dot from the reservoirs. In the buffer
regions no excitations can occur, because the energy gap there is larger than the laser energy. So
the pumping takes place in the quantum dot, and only the first state contributes to the
photocurrent.

We now consider the pumping if the laser is pulsed with a pulse time Tpyl5e and a waiting
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time T,4;; between pulses, so that the pulse frequency f = 1/(Tpyise + Twaio)- If Tpuise » Texc, the
first state will be populated with one exciton. If 7, « Tre., (Trec is the recombination time of the
exciton, or equivalently, the radiative life time), and taking Tiygi; » Tr, the electron will tunnel out
to the right-reservoir before recombining and before the next pulse. Taking also Tygi » 77, i.€.
the hole tunnels to the left, then one electron has been transported from the left- to the right-
reservoir in the cycle time Tpyise + Twajr- Note that "multi-pumping" can occur when Tpyjse is of
order max(7,, 7). In this case, an exciton can tunnel out of the dot within the pulse time, which
leaves the possibility that an extra exciton is created during the pulse. Multi-pumping is
suppressed if Tpy/se « max(7,,77). If we combine all the above conditions for the different times

we get
Texc < Tpulse « Max(%,T1) « Trec Twair 6.1)

If condition 6.1 is satisfied, one electron is transported from the left to the right reservoir within
the cycle time Tpyise + Twair. Repeating this process with a frequency f yields a quantized
photocurrent I = ef. Returning to the statistical deviation in the occupation of the first state by one
exciton due to stimulated emission, we note that currents are measured on a time scale of a
second, which makes the relative deviation Vfjf = 104 for a frequency of 100 MH,. The practical
implications of condition 6.1 will be discussed below. Furthermore, we note that in contrast to
the electron turnstiles and pumps,2.3:6 the charging energy does not affect the operation of this
exciton pump.

Spin-flip processes do not affect the photocurrent. In fact, a spin-flip of the excited electron
suppresses stimulated emission, which enhances the probability of an occupation of one exciton.
Spin-flip processes do affect the photocurrent if the laser light is circular polarized, such that
only electrons with the proper spin direction are excited. This results in an occupation probability
of 1/2, and consequently in a photocurrent /o1 = ¢f/2. In this case, spin-flip processes increase
the photocurrent to a value between ¢f/2 and ef.

If the (non-polarized) laser energy AV is increased to hvy, = E, + E'y + Egqp— Ep, excitons can
be excited to the nt# state. All states up to E, can be populated if the laser has a (quasi-
continuous) energy band with minimum energy Av; and maximum Av,,. The pulsed mode now
results in the transportation of n electrons per cycle, yielding a photocurrent / = n-ef. The
photocurrent increases in steps of ¢f when the maximum laser energy is increased. The plateau

width is a direct measure of the energy difference between consecutive exciton states.
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If the pulse frequency f is changed, the photocurrent will change proportionally with a slope
ne depending on the laser energy hv,. Deviations from this dependence can give information
about the tunnel-, recombination- and excitation times. For instance, if I > ef for hv = hv;, multi-
pumping may occur when Tpylse ~ max(7, 7). On decreasing Tpyse until I = ef, one can obtain
information about the tunnel times 7, and 7. In a similar way, if I < ef for Av = hv;, one can
compare Tpyise With Zexe by changing the power of the laser.

The photocurrent can, in principle, be enhanced to I = N-ef by putting N equal quantum dots
in parallel, which can considerably increase the quantized photocurrent. The condition is that the
spread in energy levels should be much smaller than the energy separation between consecutive
states.

A realization of a single exciton pump depends on the possibility of satisfying condition 6.1,
Starting from the left, we note that the time 7,x. to create an exciton depends on the laser power
and is typically of order 1 fs. The spread Shv in the laser energy should be much smaller than the
separation AEgp between consecutive OD-states. This gives a lower limit for the pulse time,
because of Heisenberg's uncertainty principle: 6hv = H/Tpuise « AEgp. Taking AEgp =~ 25 meV,?
yields Tpyise » 0.01 ps. For the waiting time there is no fundamental restriction. Technically,
Twait is tunable in multiples of ~10 ns. The typical quantized photocurrent is then e-100 MH,, =
16 pA, which is easily measurable. The times 7, and 777, to tunnel out of the quantum dot
include the single-particle dwell time (following from the confinement), and the effect of the
binding energy on the non-radiative exciton life time, which both depend strongly on the voltage
across the sample. With appropriate barriers, the tunnel times can, therefore, be tuned by the
voltage across the sample. Tunnel times of order 10 ps would still satisfy condition 6.1. The
most uncertain time is the recombination time 7y, which is unknown for quantum dots. In 3D
GaAs a recombination time of 3.3 ns was found.!2 When the volume of the quantum dot
becomes smaller than the exciton coherence volume, it is expected that the recombination time
increases.13 For our purposes a recombination time of order 1 ns is required. Combining again

the different times, we get
Texc = 0.001 ps « Tpyise = 0.1 ps « max(7,77) = 10 ps « Trec = 1000 ps
With these numbers the photocurrent is quantized in multiples of ef with an accuracy of about 1

%.

The main problem in realizing the single exciton pomp is the fabrication of the quantum dots.
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The etching usually induces a depletion region containing trapped surface states. This gives the
possibility for the hole to hop out of the confined state to a surface state. This destroys
luminescence, because the excited electron cannot recombine anymore with a hole in the confined
state in the valence band. Consequently, such a process may be advantegous for the exciton
pump, because it suppresses recombination. The exciton pump may therefore serve as a tool to
study the time and energy properties of 0D-exciton-states.

I would like to thank Luis Viiia for the discussion which initiated this work, and Gerrit Bauer

and Dick van der Marel for detailed discussions on the manuscript.
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ABSTRACT
We have studied charging effects in a lateral split-gate quantum dot defined by metal gates in the
two dimensional electron gas (2DEG) of a GaAs/AlGaAs hetero structure. The gate structure
allows an independent control of the conductances of the two tunnel barriers separating the
quantum dot from the two 2DEG leads, and enables to vary the number of electrons that are
localized in the dot. We have measured Coulomb oscillations in the conductance and the
Coulomb staircase in current-voltage characteristics and studied their dependence on the
conductances of the tunnel barriers. We show experimentally that at zero magnetic field charging
effects start to affect the transport properties when both barrier conductances are smaller than the
first quantized conductance value of a point contact at 2¢2/h. The experiments are described by a
simple model in terms of electro chemical potentials, which includes both the discreteness of the

electron charge and the quantum energy states due to confinement.
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7.1 INTRODUCTION

Single-electron charging effects have mostly been studied in granular films, metal tunnel
junctions, and STM-grain junctions.! More recently, it has become apparent that charging effects
can strongly affect the transport properties of semiconductor submicron structures weakly
coupled to the contact leads by tunnel barriers. The study of charging effects in semiconductor
devices started with the observation of conductance oscillations in disordered wires,2-4 which
were later explained to result from the confinement of electron charges between impurity
potential barriers.5-6 This stimulated the work by Meirav et al.,” in which a lateral quantum dot
with controllable potential barriers was used. Their device could change the number of electrons
in the dot one-by-one, which was seen in the conductance by the appearance of oscillations, and
they confirmed the explanation in terms of charging effects. Later work by McEuen et al.8 on the
same kind of device nicely showed the interplay between charging effects and magnetically-
induced zero dimensional (0D) energy states,? which we will discuss in more detail below.
These various experiments are reviewed in Ref. 10.

In this paper, we report experiments on lateral quantum dots 1! defined by split-gates in a two
dimensional electron gas (2DEG). The split-gate geometry allows a detailed study of the
conditions for observing charging effects, because of the ability to control the coupling of the
quantum dot to the environment. In particular, we will emphasize the special properties and
possibilities in which semiconductor quantum dots differ from metal structures; for example, the
quantized conductance of a point contact and resonant tunneling in relation to single-electron
charging, and different experimental ways to determine the charging energy.

The outline of this paper is as follows: in section 7.2 we discuss our split-gate device; in
section 7.3 we give a theoretical description of charging effects in quantum dots; the
experimental results are presented in section 7.4; followed by a discussion and conclusions in

section 7.5.
7.2 THE SPLIT-GATE QUANTUM DOT

Fig. 7.1 shows a SEM photograph of the gate geometry, which is fabricated on top of a
GaAs/AlGaAs hetero structure containing a two dimensional electron gas (2DEG). The plane of
the 2DEG is about 100 nm below the surface of the hetero structure. The ungated 2DEG has a
mobility of 2.3-106 cm2/Vs and an electron density of 1.9-1015 m-2 at 4.2 K. We denote gate F
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as the finger gate, gates 1 to 4 as Quantum Point Contact (QPC) gates,12:13 and gate C as the
center gate. A negative voltage of -0.4 V depletes the 2DEG underneath the gates. The narrow
channels between gates 3-1, 1-C, C-2, and 2-4 are completely pinched-off at this gate voltage. In
most of the experiments discussed in this paper, we do not use QPC gates 3 and 4; the gates are
at zero potential and have no effect on the 2DEG. Applying a negative voltage to the gates F,1,2
and C forms a dot in the 2DEG. Accounting for the estimated depletion regions yields a dot
radius R = 300 nm. QPC gates 1 and 2 are used to control the conductance of the tunnel barriers
between the dot and the wide 2DEG regions, and with the center gate we can vary the number of
electrons in the dot. A single QPC can be defined in the 2DEG by applying only a negative
voltage to the finger gate and to one QPC gate, while keeping zero voltage at the other gates. In
this way, we can measure the conductances of the individual QPCs, and compare them to the

conductance of the dot.

FIG. 7.1. Scanning Electron Micrograph of the gate geometry. The 6 gates are
labelled by F for the finger gate, C for the center gate, and 1 to 4 for the QPC gates.
The distance between gate F and C is I um, and between two adjacent QPCs is 0.8
Um. The narrow channels between the gates 3-1, 1-C, C-2, and 24, immediately
pinch-off when the device is formed in the 2DEG. Electron transport occurs from
the 2DEG beneath the black upper left region (between 3 and F) to the 2DEG
beneath the black upper right region (between F and 4).




106 chapter 7

As we discuss below, the charging effects are described in terms of the capacitance C
between the dot and its environment. An estimate of C can be obtained from the self-capacitance
C, = 8&-€,R between a 2D dot with a disc-shape and infinity. This estimate neglects the existence
of the conductors in the vicinity of the dot (the gates and the wide 2DEG regions), but we
usually find it to be correct within a factor of 3. For a dot with radius R = 300 nm and & = 13 in
GaAs gives C, = 2.8:-10'16 F and a charging energy €2/C, = 0.6 meV, which exceeds the
thermal energy kgT for temperatures below 4 K. From the electron density of the ungated 2DEG
and the dot area, we estimate that the number N of electrons in the dot is about 500. The average
energy separation between the discrete states is therefore about 2Eg/N =~ 0.03 meV,? where Ep =
7 meV is the 2DEG Fermi energy. This is less than one-tenth of the charging energy, so we
expect the charging effects to be dominant in this structure.

7.3 CHARGING THEORY FOR SEMICONDUCTOR QUANTUM DOTS

To describe charging effects in quantum dots, we follow the recent literature 14-16 in which
the charging theory for metal systems 1 is generalized to include discrete energy states. Fig. 7.2a
schematically shows the potential landscape of the quantum dot, which is induced by the gates.
In Fig. 7.2b the equivalent circuit is shown. At sufficiently large negative voltage applied to the
QPCs, the induced potential barriers will strongly localize the electrons in the dot. The number of
electrons in the dot is therefore determined being an integer and can only be changed by an

integer. We write the electro static energy E,.g of the dot as:

. 2
Ees = L Lo with: n = N—N, .1)
Qo = C}V[ + CrVr + ZCng
C = C+Cr+3C,

The integer part of the excess charge in the dot is en = e(N — N,), where N is the number of
electrons in the dot, and the elementary charge e is taken positive. N, is the number of electrons
at zero gate voltage and zero bias voltage (so N, > N), which compensates the positive
background charge originating from the donors. @, represents the continuous part of the excess
charge, which is induced by voltage differences V;and V, between the dot and the leads (eV;=
Wi — pd(N), eVy = ug(N) — iy, where pgN) is the electro chemical potential of the dot calculated
below 17), and by the gate voltages. C is the total capacitance of the dot to ground, which
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consists of the capacitances C; and C, between the dot and the two leads, and the sum of the
capacitances XCg between the dot and the gates. Note that for n = 1 and Q, = 0, Eq. 7.1 gives
the charging energy e2/2C for a single electron. For our description, however, it is more
convenient to take Ec = €2/C as the unit for charging energy. Moreover, at zero bias voltage and
at fixed gate voltage, the induced charge Q, can be compensated by tunneling of as many
electrons into or out of the dot as required to reduce the total charge to a value smaller than the
elementary charge e, so the electro static energy is minimized to a value below €?/C.

In the experiment, we measure the conductance with a small bias voltage V = (u;— ,)/e
across the sample as one gate voltage is varied. We therefore simplify Q, = CgV, (Vg < 0),
where V, denotes the gate voltage which is varied, and Cg the capacitance between this gate and
the dot. The ground state energy for N electrons in the dot at zero temperature is the sum over the

single particle energies Ej, relative to the bottom of the conduction band, and the electro static

energy:
N _ 2
U(N) = ZIEP + M’%gﬂ&)_ (7.2)
=

(a) Vg1 Vgc ng (b) _+

R R,

FIG. 7.2. (a) Potential landscape in the 2DEG induced by the gates F, C, 1, and
2. uy and py are the potentials of the wide 2DEG reservoirs. Qy is the electro static
potential with N electrons in the dot. E is the energy level of the N*% electron in the
dot, relative to the bottom of the conduction band. (b) Equivalent circuit of (a),
with a simplification of the different gate voltages by a single voltage source.
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From Eq. 7.2 we calculate the electro chemical potential which by definition is the minimum
energy necessary to add the N* electron to the dot: yugN) = UN) — UN — 1),

— 2
HaVy = By +E=DE_Cay, (1.3)

In a more familiar form p4(N) = pca(N) + ey, i.e. the electro chemical potential is the sum of
the chemical potential u.,(N) = Ey and the electro static potential egy. When the number of
electrons is changed by one, the resulting change in electro chemical potential is (at fixed gate
voltage): '

2
HaN + 1) = paN) = Ens1-EN+ (7.4)

Equation 7.4 implies that the electro chemical potential changes by a finite energy when an
electron is added to the dot. ug(N + 1) — ug(N) is large for large energy splitting between
consecutive OD-states, and/or for a small capacitance. This energy gap can lead to a blockade for
tunneling of electrons into and out of the dot, as shown schematically in Fig. 7.3a, where N
electrons are localized in the dot. The N + 1 electron can not tunnel into the dot, because the
resulting electro chemical potential #g(NV + 1) is higher than the electro chemical potentials of the
reservoirs. So for ug(N) < pppy < Hg(N + 1) the electron transport is blocked, which is known
as the Coulomb blockade. Transport is only possible by thermal activation or tunneling via
virtal states.18 Note that the energy gap of Eq. 7.4 takes place at the Fermi energy, which
determines the transport properties and the activation energy. Below 11;(N), the energy states are
separated by Ey — En.j, which in our case, are much smaller energy differences.

The Coulomb blockade can be eliminated by changing the gate voltage (or equivalently, the
induced charge Q,), so that uy(N + 1) is lined up between p;and u, [1y > pgN + 1) > ], as
illustrated in Fig. 7.3b. Now an electron can tunnel from the left 2DEG reservoir into the dot {1y
> ud(N + 1)]. The electro chemical potential in the dot increases by the amount given by Eq. 7.4,
which in our structure is dominated by the increase in electro static potential en.; — e@n = €2/C.
Because pg(N + 1) > iy, one electron can tunnel out the dot to the right 2DEG reservoir, causing
the electro chemical potential to drop to ug(N). Now, a new electron can tunnel into the dot and
repeat the cycle. This process, where current is carried by successive discrete charging and
discharging of the dot, is known as single charge tunneling 10
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(a) Coulomb Blockade (b) N+ N+1 Transition

— d(N+1)
o eeeC]

NAN
-
=

\

FIG. 7.3. Two situations for different gate voltages. (a) Coulomb blockade of
electron tunneling [uq(N) < py < Uy < pg(N + 1)]. (b) One-by-one electron
tunneling at the N — N + 1 transition [, < Ug(N + 1) < yy]. V denotes the small
voltage across the sample [eV « ugN + 1) — uAN)].

As the gate voltage is changed, the conductance of the quantum dot oscillates between zero
(Coulomb blockade), and non-zero (no Coulomb blockade). These so-called Coulomb
oscillations are illustrated in Fig. 7.4a. In the case of the Coulomb blockade, at a conductance
minimum, the number of electrons in the dot is fixed (see Fig. 7.4b). At a conductance
maximum, this number oscillates by one electron, and the electro static potential e oscillates by
€2/C (see Fig. 7.4c). In between two conductance maxima, e¢ changes by Ey,; — Ey + €2/C.
The average slope of e versus V; reflects the (de)population of the dot without charging effects.
From Eq. 7.3 and the condition pg(N,Vy) = gV + 1,Vg + AV,), we get for the period of the

oscillations in gate voltage AV, corresponding to a change of one electron:

_ C EN+1~ENy, e
AVg_Cg( ) +

P o (1.5)

For vanishing energy splitting Ey+7 — En = 0, the usual voltage-capacitance relation for a single
electron charge is obtained: AV, = ¢/C,.

A non-vanishing energy splitting would affect the period AV,. For instance, in the case of
spin-degenerate states two periods will be observable. One corresponds to electron N and N + 1
having opposite spin and being in the same 0D state and the other to electron N + 1 and N + 2
being in a different OD state.
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N+1
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FIG. 7.4. Comparison of the conductance G (a), number of electrons Ngo; (D),
and electro static energy e (c), of the dot versus gate voltage V. Between the
Coulomb oscillations, Ny, is fixed, which corresponds to the Coulomb blockade
(see Fig. 7.3a). At the maximum of the oscillations, Ng,, oscillates by one electron,
and e oscillates by €2/C. In this case, the Coulomb blockade is removed, resulting
in transport (see Fig. 7.3b).




Charging effects 111

The Coulomb blockade, as illustrated in Fig. 7.3a, can be removed by increasing the bias
voltage between the reservoirs. The resulting energy interval eV = uj — i, determines the
transport through the quantum dot. As long as the interval between g and 4, does not contain a
charge state [when L (N) < pr < < ug(N + 1) as in Fig, 7.3a] the current is zero. However,
current flow will start when either pi; > a(N + 1) > gt or 3 > pa(N) > iy, depending on how the
voltage drops across the two barriers. In this case, one can speak of opening a single charge
channel, corresponding to either the N — (N + 1) or the (N — 1) = N transition. On further
increasing the bias voltage, a second channel will open up when two charge states are contained
between gy and iy, giving rise to a second increase of the current.

For a highly asymmetric quanturn dot, for instance when the barriers are unequal, the voltage
will mainly drop across one of the barriers. This keeps the electro chemical potential of one of
the reservoirs fixed relative to the charge states in the dot, while the electro chemical potential of
the other reservoir moves in accordance with the bias voltage. In this asymmetric case, the
current changes are expected to appear in the /-V characteristics as pronounced steps; this is the
so-called Coulomb staircase. The current steps Al occur at voltage intervals AV = ¢/C. For a
symmetric quantum dot, both y; and pi, move relatively to the dot (one going up, the other going
down), such that both electro chemical potentials are crossing charge states. This smears the
steps in the Coulomb staircase,! yielding a more gradual increase of the current when the voltage
becomes larger than the threshold voltage to overcome the Coulomb blockade (i.e. to open the
first channel).

In this section, we have given a rather qualitative description of the charging phenomena
occurring in quantum dots. In Refs. 14-16, formal expressions are given for calculating the

conductance and current-voltage characteristics.
7.4 EXPERIMENTS

7.4.1 Coulomb Oscillations
The measurements are performed in a dilution refrigerator at a temperature of 10 mK, at zero
magnetic field, and using an ac lock-in technique. To characterize the sample, first the
conductances G of QPC] and G2 of QPC> are measured individually. Fig. 7.5a shows G and
G as a function of the voltage applied to, respectively, QPC; and QPCj, with zero voltage on
the other QPC. The voltage on the finger gate F is kept constant at -1.2 V. G; and G2 both show
a quantized plateau at 2e2/h, resulting from the formation of 1D subbands in the QPCs.12:13 At
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FIG. 7.5. Comparison of the QPC conductances and the appearance of Coulomb
oscillations. (a) Conductances G and G2 of the individual QPCs versus gate
voltage, both showing a quantized plateau at 2e2/h. (b) Conductance of the dot
versus center gate voltage V¢ for different voltages on QPCj. The labels ‘a’ to ‘e’
correspond with the same labels in the conductance curve of QPC] shown in (a).
The conductance of QPC3 is fixed below the plateau at about half 2¢2(h. The curves
have been offset for clarity.

e
Al
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the plateau the transmission probability 77 = 1 for electrons in the first 1D subband and T =
0 for electrons in all higher subbands. Below the plateau, when G7,G2 < 2¢2/h, the transmission
probability T7 < 1, meaning that electrons in the first subband have a non-zero probability to be
reflected in the QPC.

In Fig. 7.5b the conductance of the dot is shown as a function of the voltage V¢ on the center
gate C with fixed voltages on QPC gates 1 and 2, and zero voltage on gates 3 and 4. The
conductance of QPC; is fixed below the plateau at a value of about e2/h (i.e. QPCy has T; =
0.5). The different curves in Fig. 7.5b correspond to different conductances G of QPCy
ranging from the plateau value 2e2/h (curve a) to well below the plateau value (curve e). In curve
a, the conductance of the dot smoothly decreases as the voltage V¢ on the center gate is reduced.
This decrease is due to the influence of V¢ on the conductance of the QPCs. The influence is
probably largest on QPCp, which has the smaller conductance. In curve b, where QPC] is in the
middle of the plateau (see Fig. 7.52), the conductance shows a behaviour similar to that of curve
a. However, small oscillations appear in curve ¢, where the conductance of QPC] is just below
the quantized value. The amplitude of the oscillations increases in curves d and e, which
correspond to lower values of G;. The oscillations are seen to disappear when the average dot
conductance becomes too small. We note that G| is somewhat smaller than expected from Fig.
7.5a due to the influence of QPC2 on QPC; when voltages are applied to both QPC gates.
Moreover, we note that the oscillations also disappear when V> -0.4 V, because the center gate
no longer depletes the 2DEG beneath it. The sample then consists of two QPCs in series with a
very large 2DEG region in between.

Fig. 7.6 shows the oscillations, when both QPCs are pth well in pinch-off (G7,G2 « 2€2/h).
Now, the oscillations appear as sharp peaks with an amplitude up to e2/h. Interestingly, the
maximum of the oscillations is considerably larger than both G; and G, indicating that the
transmission through the dot is of a coherent resonant nature. Resonant transmission is a
signature of tunneling through a particular OD energy state. We will return to this point below.
The comparison between the individual QPC conductances and the dot conductance in Figs. 7.5
and 7.6 demonstrates that at zero magnetic field charging effects occur only when both QPC
conductances are below the quantized plateau value 2e2/h, and that the amplitude of the Coulomb
oscillations increase as the QPC conductances decrease.

As illustrated in Fig. 7.4, each period corresponds to a change of one electron in the dot. If
we neglect the discreteness of the energy states, we derive from the period AV = 8.3 mV a
capacitance between the dot and the center gate C¢ = e/AV = 0.19-10-16 F. To determine the
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FIG. 7.6. Conductance of the dot versus center gate voltage V¢ for G1,G2 «
2e2/h. The Coulomb oscillations appear as sharp peaks with an amplitude of about
e2/h.

total capacitance XC, between the dot and the six gates of the sample, we have measured the
oscillations by varying the voltage on the different gates, while keeping the voltage on the

remaining gates fixed. The results are:

AV = 2.1mV - Cr = 0.76 - 10°-16 F
AV; = 75mV - Ci = 021.10-16F
AVy = 58mV - C; = 028.10-16F
AV34 = 60mV o Cia = 027.10-16F
AVe = 83mV - Cc = 019.10°16F

3Cg = 171-10716F

The capacitance of gates 3 and 4 was measured by varying both gate voltages V3, and Vg4
simultaneously, while keeping their values V3, V4> -0.3 V such that the two outer dots were not
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FIG. 7.7. Conductance of the dot versus center gate voltage V¢ for different sizes
of the dot. The period of the oscillations roughly scales with the size of the dot.
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yet formed in the 2DEG. Note that the largest capacitance is associated with the large finger gate,
all other values being of a comparable value, as expected from Fig. 7.1. If we neglect the
capacitances between the dot and the 2DEG reservoirs (Cy + Cr « XCpg), we get for the total
capacitance C ~ XCyq = 1.7-10-16 F. The corresponding charging energy is Ec = €2/C = 0.94
meV. These values agree reasonably well with the estimate of the self-capacitance C, = 2.8-10-16
F from the geometry. An independent way to estimate Ec is by energy averaging of the Coulomb
oscillations, by increasing either the temperature or the bias voltage across the sample, We find
that the size of the oscillations decrease as the voltage across the sample is raised, from which we
deduce 0.7 meV < E¢ < 1.4 meV. Non-linear transport measurements, such as /-V
characteristics from which E¢ and C can directly be determined, will be discussed in the next
section.

Using QPC gates 3 and 4, we can increase the dot size to two strongly coupled dots (i.e.
effectively one dot with a double size), and three strongly coupled dots (i.e. one dot with three
times the size of the center dot). Fig. 7.7 shows the Coulomb oscillations versus center gate
voltage. The periods in gate voltage are AV )4, = 9.0 mV, AV24pss = 5.3 mV, AV34pss = 3.6
mV, yielding capacitances between the center gate and the dot: C¢ 140¢ = 1.8-10°17 F, C¢ 24pss =
3.0-10-17F, C¢ 3doss = 4.4-10-17 F, which have the ratios 1.2:2:3. This result shows that the
gate capacitance scales with the size of the dot.

7.4.2 Coulomb Staircase

We have measured /-V characteristics on a different sample with the same gate geometry,
which showed Coulomb oscillations with a period of 4.6 mV in center gate voltage.19:20 The I-V
characteristics are shown in Fig. 7.8, where the different curves have been given an offset for
clarity ( = 0 occurs at V = 0). The curves are measured for different center gate voltages, where
in Fig. 7.8a the lowest curve corresponds to a maximum in the Coulomb oscillations (i.e. N —»
N + 1 transition), having a finite conductivity d//dV for small V. The curve in the middle
corresponds to a conductance minimum, showing a gap around V = 0. The uppermost curve
corresponds to the adjacent maximum, again showing a finite conductivity dl/dV for small V.
The periodicity of this Coulomb staircase is an important check to distinguish non-linear
charging effects from other non-linearities (for instance due to lifting the Fermi energy over the
top of one of the barriers). The difference between Fig. 7.8a and 7.8b illustrates the effect of the
QPC conductances on the /-V curves. In Fig. 7.8a the QPC conductances are about equal, and

only the first current step (from V = 0) appears as a rapid increase. The increase is more gradual
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FIG. 7.8. I-V characteristics for different center gate voltage, demonstrating the
Coulomb staircase and its periodicity in gate voltage for roughly equal (a) and
differing QPC conductances (b). In the latter case the staircase shows more
pronounced steps due to the induced asymmetry in the dot. The curves are offset
Jor clarity (I = 0 occurs at V = 0).
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at the other current changes. In Fig. 7.8b, the current changes appear as more pronounced steps,
and form the Coulomb staircase. Here, the QPC conductances are made more unequal, thereby
inducing an asymmetric quantum dot which is necessary for a well-developed staircase.!

The current steps Al = 0.2 nA occur at voltage intervals AV = 0.67 mV. This voltage
difference is a direct measure of the charging energy in this second sample: AV = e/C, from
which we get a total capacitance C = 2.4-10-16 F. The current step height A/ gives an estimate
for the total tunnel conductance 1/G = 1/G; + 1/G3. Due to the opening of an extra single charge
channel, one extra elementary charge e is transported through the dot in a typical time C/G,
yielding Al = eG/C. This gives G = (4 MQ)-1 and a time C/G = 10105, In Ref. 19 and 20, we
have shown that this total tunnel time can be locked with an external frequency f, by creating
oscillating tunnel barriers. With this so-called turnstile operation,?! we found a quantized

current at integer multiples of ef.
7.5 DISCUSSION AND CONCLUSIONS

In most aspects, the experiments performed on semiconductor devices, as reported in Refs.
2,3,4,7, and in this paper, can be described by the theory developed for metal systems.! The
unique advantage of quantum dots defined by gates in a 2DEG, is that the conditions for the
occurrence of charging effects can be studied by simply tuning the gate voltages. We showed
that at zero magnetic field a sharp transition exists at QPC conductances G;,G2 = 2e2/h for
charging effects to appear. This sharp transition is due to the conductance quantization of the
QPCs, which couple the dot to the 2DEG leads. To understand this, we note that the
transmission probability defined as T = 1 Wl 2/| ;2 (averaged over time), also defines the
quantum leakage or fluctuations in time of the electron wave functions through the barrier. For
the occurrence of charging effects, the fluctuations in the number N of electrons in the dot must
be smaller than 1. This starts to occur just below the first quantized plateau, where Ty <1.Ina
high magnetic field the conductance of a QPC is quantized in units of e2/h. Although not shown
here, we found that charging effects now occur when the conductance of both QPCs is smaller
than e2/h, like expected from the above given argument.

To apply these arguments to the metal junctions, we note that in this case the barriers are thin
but much higher than the Fermi energy. Although the subbands have a small transmission
probability T, « 1, many subbands (m =~ 106 — 108) contribute incoherently to the conductance.
The total fluctuation becomes of order 1 when YT,y is of order 1. Experimentally it is found that

m
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for tunnel junctions the charging effects occur much more gradually when the tunnel
conductances become G = 2¢2/h.22

When both QPCs are well in pinch-off (T « 1), the fluctuations are suppressed, and the
number of electrons becomes a well-defined classical integer variable. This suppression results
in an increase of the amplitude of the Coulomb oscillations, and in an oscillation minimum that
approaches zero when the Coulomb blockade becomes well-defined. The large amplitude of the
oscillations in this regime with conductance maxima larger than the individual barrier
conductances, indicates that coherent resonant transmission occurs through the dot. This means
that no inelastic relaxation or complete phase-randomization takes place in the dot, which would
result in conductance maxima being smaller than the barrier conductances. Resonant
transmission demonstrates that electron transport through the dot takes place through a particular
OD-state. So with the dimensions of our structure, the energy scale of the oscillations is mostly
determined by charging effects, but the exact shape and amplitude reflects the presence of 0D-
states. Fine structure seen in the Coulomb oscillations at high magnetic field indicates the
presence of magnetically altered OD states in our device.23

McEuen et al.8 have carried out a careful study of the amplitude and the position of the peaks
as a function of magnetic field. Measuring small changes in the positions of the oscillations and
large changes in the amplitude by varying the magnetic field, they could deduce the OD-energy
spectrum in their structure in the quantum Hall regime by subtracting a constant value for the
charging energy from the oscillation period in gate voltage (see also Eq. 7.5).

The experiments performed on quantum dots containing more than 100 electrons, show that
although the Coulomb interaction between the electrons is included in the charging theory only as
a constant capacitance parameter, this simplification nevertheless gives a good description.
Moreover, in the devices studied so far, the charging energy has been much larger than the
energy separation between the OD-states. A new regime would be reached with smaller quantum
dots where charging energy and OD-splitting are comparable, and where the number of electrons
in the dot can be changed starting from zero. In this regime, the description of electron-electron

interaction by a constant capacitance parameter, is expected to fail. 24



120 chapter 7

ACKNOWLEDGEMENT

We wish to thank L.J. Geerligs, H. van Houten, K.K. Likharev, J.E. Mooij, and B.J. van
Wees for stimulating discussions, A. van der Enden, P.A.M Holweg, and D.J. Maas for their
contributions to the device fabrication, and the Delft Institute for MicroElectronics and
Submicrontechnology for the use of their facilities. Financial support from FOM and ESPRIT
(project 3133, NANSDEV) is gratefully acknowledged. L.P.K. acknowledges the Sakaki
Quantum Wave Project in Tokyo for the hospitality during the preparation of the manuscript.

REFERENCES

This chapter was published in Zeitschrift fiir Physik B-Condensed Matter 85, 367-373
(1991).

1. See for a review: D.V. Averin and K.K. Likharev, in Quantum Effects in Small Disordered
Systems, edited by B.Al'tshuler, P. Lee, and R. Webb (Elsevier, Amsterdam, 1990).

2. J.HPF. Scott-Thomas, S.B. Field, M.A. Kastner, H.I. Smith, and D.A. Antonadis, Phys.
Rev. Lett. 62, 583 (1989).

3. S.B. Field, M.A. Kastner, U. Meirav, J.H.F. Scott-Thomas, D.A. Antonadis, H.I. Smith,
and S.J. Wind, Phys. Rev. B 42, 3523 (1990).

4. A.AM. Staring, H. van Houten, C.W.J. Beenakker, and C.T. Foxon, High magnetic

fields in semiconductor physics 111, edited by G. Landwehr (Springer, Berlin, 1990).

H. van Houten and C.W.J. Beenakker, Phys. Rev. Lett. 63, 1893 (1989).

L.I. Glazman, and R.L. Shekhter, J. Phys.: Condens. Matter 1, 5811 (1989).

U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Lett. 65, 771 (1990).

P.L. McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and

S.J. Wind, Phys. Rev. Lett. 66, 1926 (1991).

9. B.J. van Wees, L.P. Kouwenhoven, C.J.P.M. Harmans, J.G. Williamson, C.E.
Timmering, M.E.I. Broekaart, C.T. Foxon, and J.J. Harris, Phys. Rev. Lett. 62, 2523
(1989).

10. "Single Charge Tunneling” , H. Grabert, J.M. Martinis, and M.H. Devoret, eds. (Plenum,
New York, 1991).

11. See also: L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, C.J.P.M. Harmans,
J.G. Williamson, A.A.M. Staring, and C.T. Foxon, Festkorperprobleme/Advances in
Solid State Physics, U. Rdssler (ed.) Vol. 31, pp. 329-340.

12. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P.
Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

13. D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G.

00 1 O\ W




Charging effects 121

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L209 (1988).
A.N. Korotkov, D.V. Averin, and K.K. Likharev, Physica B 165&166, 927 (1990);
D.V. Averin, A.N. Korotkov, and K.K. Likharev, Phys. Rev. B 44, 6199 (1991).

A. Groshev, T. Ivanov, and V. Valtchinov, Phys. Rev. Lett. 66, 1082 (1991).

C.W.J. Beenakker, H. van Houten, A.A.M. Staring, Phys. Rev. B 44, 1657 (1991);
C.W.]. Beenakker, Phys. Rev. B 44, 1646 (1991);

H. van Houten, C.W.J. Beenakker, A.A.M. Staring, in Ref. 10.

Note that V;, and V; as defined here differ form the results of ordinary circuit analysis, e.g.
capacitor divider equations. This comes from our inclusion of the discrete electron charge,
while circuit analysis implicitly assumes a continuous charge fluid.

D.V Averin, and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).

L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans, and C.T.
Foxon, Phys. Rev. Lett. 67, 1626 (1991).

L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, A. van der Enden, C.J.P.M.
Harmans, and C.T. Foxon, Z. Phys. B - Condesed Matter 85, 381 (1991);

See also chapter 8 of this thesis.

L.J. Geerligs, V.F. Anderegg, P.A.M. Holweg, J.E. Mooij, H. Pothier, D. Esteve, C.
Urbina, and M.H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).

L.J. Geerligs, Classical and quantum charge dynamics in small tunneljunctions, thesis,Delft
University of Technology (1990).

A.T. Johnson et al., to be published.

See also chapter 9 of this thesis

A. Kumar, S.E. Laux, and F. Stern, Phys. Rev. B 42, 5166 (1990).




CHAPTER 8

Quantized Current in a Quantum Dot Turnstile
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ABSTRACT
We have performed RF experiments on a lateral quantum dot defined in the two dimensional
electron gas (2DEG) of a GaAs/AlGaAs hetero structure. The small capacitance of the quantum
dot gives rise to single-electron charging effects, which we employed to realize a quantum dot
turnstile device. By modulating the tunnel barriers between the quantum dot and the 2DEG leads
with two phase-shifted RF signals, we pass an integer number of electrons through the quantum
dot per RF cycle. This is demonstrated by the observation of quantized current plateaus at
multiples of ef in current-voltage characteristics, where f is the frequency of the RF signals.
When an asymmetry is induced by applying unequal RF voltages, our quantum dot turnstile

operates as a single-electron pump producing a quantized current at zero bias voltage.
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8.1 INTRODUCTION

The ability to control current on a single-electron level has become feasible by employing the
Coulomb blockade in submicron devices. This single-electron control is not only interesting
from a fundamental point of view, but may find applications in an accurate current standard and
other novel devices. Many proposals have been made for circuits producing a current determined
by the frequency of an externally applied signal. Metal tunnel junction systems have already
demonstrated the transport of one electron per cycle of a RF signal.}-2 In a 1D array of tunnel
junctions, Delsing et al.3 were able to lock the time-correlated tunneling of charge solitons to a
RF signal. Geerligs et al.4 used a gate capacitor to couple a RF signal to the central island of 4
junctions in series, modulating the Coulomb gap so that exactly one electron passed their
turnstile device per RF cycle. Using two phase-shifted RF signals to modulate the Coulomb gap
in two neighbouring islands, Pothier et al.5 realized a single-electron pump: a device transporting
one electron per RF cycle at zero bias voltage. This control of single-electrons was demonstrated
in the above experiments by observing a current plateau at / = ¢f in I-V characteristics, where fis
the frequency of the RF signals. The best accuracy of a few times 104 was obtained in Ref. 4. It
has been argued 24 that improved devices could reach an accuracy of 108, and may serve as a
current standard. Related experiments have demonstrated the control of Cooper pairs in
Josephson junctions by the observation of time-correlated tunneling of Cooper pairs 6 and the
realization of a single-Cooper pair pump.7 New systems have been proposed for phase locking a
Bloch wave with external signals 8 and for passing single-electrons through a STM-grain
junction.?

The realization of the metal turnstile stimulated this effort to produce a similar device in a
semiconductor system.10 Although, a close analogy could have been studied in which the
Coulomb gap in a semiconductor quantum dot is modulated, we have chosen a different
approach that employs the electro static control inherent to gated hetero structures. Our quantum
dot turnstile relies on applying two phase shifted RF signals to the gates forming the tunnel
barriers between the quantum dot and the wide two dimensional electron gas (2DEG) leads.11
The out-of-phase oscillating tunnel barriers open and close the entrance and exit of the quantum
dot. If the entrance is open, and simultaneously, the exit is closed, an integer number n of
electrons tunnels into the dot, determined by the Coulomb gap and the bias voltage. After closing
the entrance and opening the exit, the same number of electrons tunnels out of the dot. This

process of transporting n electrons per RF cycle through the quantum dot is demonstrated by our
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observation of quantized current plateaus at the values n-¢f in I-V characteristics.10 Moreover,
we show that the flexibility of a gated quantum dot allows us to tune the various parameters
which control the transport. The introduction of an asymmetry in the quantum dot turnstile
allows it to pump a discrete number of electrons at zero bias voltage.

The outline of this paper is as follows; in section 8.2 we describe the gate geometry and how
we characterize the quantum dot; in section 8.3 we describe the device operation principles and

experiments; a discussion and conclusions follow in section 8.4.
8.2 THE SPLIT-GATE QUANTUM DOT

8.2.1 Sample Layout
Fig. 8.1 shows a SEM photograph of the gate geometry, which is fabricated on top of a
GaAs/AlGaAs hetero structure with a 2DEG about 100 nm below the surface. The ungated
2DEG has a mobility of 2.3-106 cm?/Vs and an electron density of 1.9-1015 m-2. We denote gate
F as the finger gate, gates 1 to 4 as Quantum Point Contact (QPC) gates, and gate C as the center

FIG. 8.1. Gate geometry: F denotes the finger gate, 1 and 2 the QPC gates, and C
the center gate. Gates 3 and 4 are not used. The distance between gate F and C is 1
Hm and between two adjacent QPCs is 0.8 pm.
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gate. In the experiments discussed in this paper, we do not use QPCs 3 and 4; these gates are
grounded and have no effect on the 2DEG. Applying a negative voltage to the gates F,1,2 and C
forms a dot in the 2DEG. Subtracting the estimated depletion regions from the dimensions of the
gate geometry yields a dot radius R ~ 300 nm. The narrow channels between gates 1-C, and C-2
immediately pinch-off when the dot is formed in the 2DEG. The QPCs are used to control the
tunnel barriers between the dot and the wide 2DEG regions, and with the center gate we can vary
the number of electrons in the dot. Current flows from the 2DEG beneath the black upper left
region in Fig. 8.1 (between 1 and F) to the 2DEG beneath the black upper right region (between
F and 2).

In addition to the dc gate voltages, RF signals can be applied to the QPCs by capacitively
coupling RF coaxial cables to the dc gate wires it the vicinity of the sample. The RF signals are
strongly attenuated at 1.4 K. All experiments were performed in a dilution refrigerator at a
temperature of 10 mK and in zero magnetic field. We apply a dc bias voltage between the two
wide 2DEG regions and measure the dc current in a two-terminal configuration with a resolution
of less than 0.1 pA.

8.2.2 Charging effects without applying RF signals

The gate structure lets us independently tune the 4 different dc gate voltages, the 2 RF signals,
and their phase difference. This flexibility may, on the other hand, make it difficult to tune all
parameters to the regime appropriate for a turnstile operation. In this section, we describe a way
to determine suitable values for the various experimental parameters.

In all measurements we keep the voltage on the finger gate constant at Vg = -700 mV. The
QPC conductances G and G are characterized individually by varying the voltage on one QPC
gate with zero voltage on the other, from which we obtain the pinch-off gate voltages V; = -850
mV for QPCy, and V3 = -815 mV for QPC; .

To obtain the various dot-gate capacitances, voltages are applied to QPC1, QPCy and C such
that the barrier conductances G7,G2 « 2e2/h. This is the regime were single-electron charging
regulates tunneling through the dot, resulting in for instance the Coulomb oscillations.12-14 Fig,
8.2a shows the Coulomb oscillations obtained by varying respectively the voltage on QPCj,
QPCy, and the center gate C, while keeping the other voltages fixed. Because each period AVgin
gate voltage corresponds to a change of one electron in the dot, we obtain the dot-gate
capacitances from the relation AV, = ¢/C, yielding for the dot-QPC; capacitance C; = 0.44-10-16
F, the dot-QPC> capacitance C; = 0.44-10-16 F, and for the dot-center gate capacitance C¢ =
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FIG. 8.2. (a) Coulomb current oscillations versus the gate voltages. The x-axis values refer to
the bottom curve (center gate voltage). Top curve: the voltage on QPCj varies from -830 mV to
-780 mV. The center gate voltage is -450 mV, while that on QPC3 is -780 mV. The oscillation
period is 3.6 mV. Middle curve: the voltage on QPC3 varies from -800 mV to -750 mV. The
center gate voltage is -450 mV, while that on QPC] is -820 mV. The oscillation period is 3.6
mV. Bottom curve: The voltages on QPC} and QPC2 are -820 mV and -770 mV, respectively.
The oscillation period is 4.6 mV. (b) Coulomb staircase I-V characteristics: the curves corre-
spond to different values of V¢ (steps of 1 mV) and are offset for clarity (I = 0 occurs atV = 0).
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0.35-10-16 F. Since C; = C>, the influence of the two QPC gate voltages on the dot are equal in
this sample.!5 The charging energy Ec = €2/C is determined by the total capacitance C = X;C;
between the dot and the 2DEG leads, and between the dot and the gates. We obtain this value
from the plateau width AV = ¢e/C = 0.67 mV in the Coulomb staircase shown in Fig.8.2b,
which gives C = 2.4-10-16 F. The different /-V characteristics are measured for different center
gate voltages V¢, illustrating the periodicity in V¢ in accordance with the Coulomb oscillations
in Fig. 8.2a. A gap with I = 0 around V = 0 corresponds to an oscillation minimum, while a

maximal conductivity df/dV corresponds to an oscillation maximum.

8.2.3 Electron pump using one oscillating barrier

To determine how a RF signal is transferred from the gates into the 2DEG, we have performed
measurements where we apply a RF signal in addition to a dc voltage to one QPC. Only a dc
voltage is applied to the other QPC, and we keep the voltage on the center gate fixed. We sweep
one of the dc QPC voltages and measure the current at zero bias voltage for different RF
amplitudes and f = 10 MHz. The lower set of 5 curves in Fig. 8.3b are measured for sweeping
QPC; and keeping QPC; fixed at its pinch-off voltage. Without RF the current is zero, as
expected from the zero bias voltage. However, if RF is applied to QPC, the current shows a
negative peak at the pinch-off voltage of QPCj, which is the one being varied. When we change
the RF signal to QPCy, the current peak reverses sign, but is still located at the pinch-off voltage
of the sweeping QPC. Similar curves are obtained when the voltage on QPC; is varied with
QPC; fixed at its pinch-off voltage (see the upper part of Fig. 8.3b). Now, the current peaks are
located at the pinch-off voltage of QPC». A positive current peak again occurs when RF is
applied to QPC3, while a negative current peak appears for applying RF to QPCj. The amplitude
and the width of the current peak is seen to increase on increasing the RF amplitude. The fact that
the current peaks are about equal in size for applying RF to one or the other QPC, shows that the
RF is equally transferred from the two QPCs to the 2DEG. We emphasize again that the non-
zero current occurs for zero bias voltage, indicating that the electrons are pumped to a higher
energy by the system's only energy source, which is the RF signal.

To explain this electron pumping, we show in Fig. 8.3a the potential landscape of the dot with
one fixed barrier, and one oscillating barrier. The electro chemical potentials 1y and L, of the
2DEG reservoirs are equal, corresponding to zero bias voltage. On increasing the left barrier, the
conduction band bottom in the dot will be lifted by an amount determined by the capacitance
between the QPC gate and the dot. The increase of the band bottom pumps the electrons in the
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FIG. 8.3. (a) Schematic picture of the electron pump using one oscillating tunnel
barrier. (b) Current versus dc gate voltage on QPC} with a fixed voltage V2 = -815
mV on QPC3 (lower set of curves) and versus dc gate voltage on QPC» with a fixed
voltage V1 = -850 mV on QPC| (upper set of curves) at zero bias voltage. The
curves are measured without RF (I = 0 curves) and for a RF amplitude of 8 mV
(smaller current peaks) and 11 mV (larger current peaks). When RF is applied to
QPC| the current peak is negative, while a positive current peak appears for RF
applied to QPC). The upperset curves have an offset of 4 pA.
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dot to a higher energy, lifting the electro chemical potential 4 in the dot above y and u,
(indicated by the hatched energy region). Electrons can now tunnel out of the dot, which
preferentially occurs to the right reservoir at this point because the right barrier is smaller. When
the left barrier is lowered, the dot will fill with electrons from the left reservoir, because now the
left barrier is smaller. So, the oscillating barrier is pumping electrons over the fixed barrier; this
picture predicts a sign of the pumped current which agrees with the measurements. Changing the
RF to the right barrier reverses the current direction, which is also seen in the measurements of
Fig. 8.3b. The pumping only occurs when the fixed barrier is just in pinch-off and the other
barrier oscillates around pinch-off. At other gate voltages, one barrier always forms the bottle-
neck for transport, while Fig. 8.3a shows that for pumping the bottle-neck alternates from one
barrier to the other. This is the reason that zero current is observed away from the pinch-off
voltages.

For the turnstile operation, two RF signals with a phase difference 7 are applied to the QPC
gates. In this case, the influence of the RF signals on the band bottom is mostly compensated.
This can already be seen from Fig. 8.3b by adding the positive and negative current peaks, but
we discuss this point in more detail below. From Fig. 8.3b we also choose the dc QPC voltages
for the turnstile operation. Taking V; = -865 mV and V2 = -825 mV, the barriers oscillate

between the zero-current region left from the peak into the current peak region.
8.3 QUANTUM DOT TURNSTILE

8.3.1 Operation principles

Fig. 8.4 schematically shows the potential landscape of the dot for 4 stages of a RF cycle. The
two barriers oscillate with a phase difference x. In (a) the barriers are in their equilibrium
position, which is the same as without applying RF. The electron states in the 2DEG reservoirs
are occupied up to the electro chemical potentials ty; and p,, which differ due to the bias voltage
V = (u;— pr)le. The level N in the dot denotes the electro chemical potential 4(N) when N
electrons are localized in the dot (i.e. the minimum energy for the N/ electron). Addition of an
extra electron to the dot into the lowest available energy state, would increase the electro chemical
potential to pg(N + 1), indicated by the (N + 1) level in Fig. 8.4. The difference gg(N + 1) -
UAN) = €2/C is an electro static energy increase, 16 which we represent as an increase of the band
bottom (compare the band bottom in (a) where there are N electrons in the dot with the band
bottom in (c) where the number of electrons is N + 1). In principle, the (N + 1) electron could
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FIG. 8.4. Schematic potential landscape through the quantum dot, where u; and
Ur denote the electro chemical potentials of the left and right reservoirs; V = (uy—
Ur)le is the bias voltage; the level N indicates the electro chemical potential pg(N)
when N electrons are confined in the quantum dot, while the level (N + 1) indicates
Ha(N + 1). (a) to (d) represent 4 stages of a RF cycle where the probability for
electron tunneling is large when the barrier is low (solid arrows), and small for high
barriers (dashed arrows).

tunnel from the left reservoir into the dot, thereby increasing the electro chemical potential of the
dot from p4(N) to pg(N + 1). Tunneling out of the dot to the right reservoir, returns the dot to the
initial situation. This process where the number of electrons in the dot alternates between N and
N + 1, can occur when a charge state is enclosed by the electro chemical potentials of the
reservoirs [y > ug(N + 1) > p,], and corresponds to a maximum of a Coulomb oscillation. The
typical time for tunneling of an electron through the dot is the RC time, where R is the total
tunnel resistance of the two barriers in series. During turnstile operation, these tunnel events
(indicated by the dashed arrows in Fig. 8.4), contribute an unwanted leakage current, which can
be suppressed by increasing the resistance of the dc tunnel barriers. For the dc gate voltages used
for the turnstile operation, this suppression of tunneling appears as a vanishing amplitude of the

Coulomb oscillations.
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We start the description of the turnstile operation in (a) with N electrons in the dot. The (VW +
1) electron has a large probability to tunnel into the dot in (b) at 1/4 the RF cycle, when the left
barrier is at its minimum. Simultaneously, the right barrier is strongly increased, suppressing the
probability to tunnel out of the dot to the right reservoir to virtually zero. At half the cycle time in
(c), the barriers are in their equilibrium position again, however, compared to (a) one extra
electron is localized in the dot. The dashed arrows again indicate possible leakage. In (d), at 3/4
the cycle time, the right barrier is lowered to its minimum value, so the (N + 1) electron has a
large probability for tunneling to the right reservoir, as indicated by the solid arrow. If the
wanted tunnel events (solid arrows) have a probability of one, and the unwanted leakage events
(dashed arrows) have zero probability, then exactly one electron is transported during the cycle
from (a) - (d). Repeating this process with frequency f, gives a frequency-determined current / =
ef. If the bias voltage is increased, so that the number of charge states in the interval between gy
and 1, is increased to n, then exactly n electrons will pass through the quantum dot per RF cycle,
yielding a quantized current I = n-¢f. This quantized current corresponds to the current steps A/
= ¢/RC in the Coulomb staircase, but in the case of the turnstile the stepheight Al = ef is
determined by the externally applied frequency. The steps in the staircase come at voltage
intervals e/C, so we predict an average conductance of the turnstile /-V characteristic proportional
to frequency <G> = efl(e/C) =fC .

The accuracy of this quantized current can be estimated by comparing the tunnel times for
leakage and for wanted tunnel events with the frequency f of the RF signal.1l With the dc gate
voltages chosen from the pump experiment of Fig. 8.3b, the tunnel resistance R = 1/G is about
100 G, which yields a typical time for leakage RC/leqk ~ 10-5. When a barrier is minimal, its
tunnel resistance is of order 1 M, yielding a tunnel time for wanted events RC/ynner = 10-10s.
If the frequency f = 10 MHz, the time ratio (1/f)/RC/ieak = 10-2 gives a probability for leakage
per cycle of 1-exp(-0.01) = 0.01, while (/f)/RC/ unnet = 103 gives a probability for wanted
tunnel events of 1—exp(-1000) = 1. The thermal energy kgT at 10 mK is two orders of
magnitude less than e2/C, so excess electron transport via thermal activation is exponentially
suppressed. These considerations predict a turnstile accuracy of about 1 %, and show the

feasibility of a quantum dot turnstile.

8.3.2 Experiment
For the turnstile experiments we apply gate voltages to QPCj, and QPCs, which are somewhat
more negative than their pinch-off voltages, as we deduced from the pump experiment of Fig.
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8.3. The I-V characteristic without RF is shown in Fig. 8.5, which shows a gap between V = -4
mV and V = 6 mV. From an expansion of the I-V curve around V = 0, we estimate the tunnel
resistance R = 100 GQ2. Within the gap, a Coulomb staircase may be hidden with current steps
Al = ¢/RC = 10 fA, which is smaller than the measurement resolution. This shows that the large
barriers will suppress unwanted tunnel events during turnstile operation. The rapid current
increase at V = -4 mV and 6 mV is due to the non-linear QPC conductances,17 and occurs when
one of the electro chemical potentials of the reservoirs is lifted over the top of the barriers.

The measured /-V curves for RF signals with a phase difference of & applied to QPCy and
QPC; are shown in Fig. 8.6 for f = 10 MHz. The RF amplitudes VRF ~ 30 mV are about 10
times the period of the Coulomb oscillations. The quantized current values n-ef are indicated by
the dotted lines (e-10 MHz = 1.6 pA). The different curves correspond to different center gate
voltages V¢, again illustrating the periodicity in V¢, and are offset from each other by ef. Fig.
8.6 shows that on applying RF, the I-V curves have current plateaus at multiple values of ef,
demonstrating that a discrete number of electrons are transferred through the quantum dot for

each RF cycle.!8 For some values of n, the plateau is missing or weakly developed. Note that
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FIG. 8.5. I-V characteristic for the gate voltages used for the turnstile operation
(V1 =-865 mV and V3 = -825 mV) without applying RF.
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CURRENT (pA)

VOLTAGE (mV)

FIG. 8.6. I-V characteristics when two phase shifted RF signals are applied with
a frequency f = 10 MHz, showing current plateaus at integer values of ef (dotted
lines). The curves correspond to different center gate voltages (in steps of 1 mV)
and are offset for clarity by an integer times ef (I = 0 occurs atV = 0).

CURRENT (pA)

VOLTAGE (mV)

FIG. 8.7. I-V curves for RF frequency f = 5, 10, and 20 MHz, demonstrating
scaling with frequency by the observed scaling of the quantized current values and
the average slope <G> = fC. Dotted lines indicate multiples of ef for f = 10 MHz.




Quantum dot turnstile 135

this always occurs with two neighbouring plateaus. This plateau smearing occurs if the tunnel
barriers are about equal, such that the voltage drops across both barriers instead dropping mainly
over one barrier, which is required for a well-developed staircase.1.14

The current plateaus are shown in a different way in Fig. 8.7, where for f = 10 MHz the same
curves are shown as in Fig. 8.6, but now without offsets. The dotted lines indicate the quantized
current values n-¢f for f = 10 MHz. The different curves cross each other at multiple values of ef
for n ranging from -7 to 7, which, as expected, occur at multiple voltage values of ¢/C = 0.6
mV. To demonstrate scaling with frequency, also I-V curves are shown for f = 5 and 20 MHz,
which have, respectively, twice and half as many crossings compared to the curves for 10 MHz.
Moreover, the average slope of the I-V curves scales with frequency, as expected from the
relation <G> =fC, and is in agreement with the value for C obtained from the Coulomb
staircase shown in Fig. 8.2b.

An alternative way of measuring the same curves is shown in Fig. 8.8a, where the current is
shown versus center gate voltage for different bias voltages and f = 10 MHz. The current is
independent of center gate voltage and equal to n-ef, when the bias voltage corresponds to a
crossing in the /-V curves. At other bias voltages, the current oscillates with a period equal to the
period of the Coulomb oscillations shown in Fig. 8.2a. However, the oscillation amplitude is
now determined by the RF frequency: current lies between n-ef and (n + 1)-ef. Note that a
current maximum below a constant current / = n-¢f curve becomes a minimum beyond it, while a
minimum turns into a maximum. An analogous measurement was obtained for the metal turnstile
of Ref. 4. To explain these frequency determined Coulomb oscillations, we schematically show
in Fig. 8.8b the electro chemical potentials of the reservoirs differing by eV, and the charge
states differing by e2/C, for two different center gate voltages and two bias voltages. In the left
part, where V < e/C, either one or zero charge states contribute to the current, which therefore
oscillates between O and ef on varying the gate voltage. In the right part, the bias voltage is
increased to V > e/C. Now, either one or two charge states contribute to the current, so the
oscillations are bounded by ef and 2ef. When V = e/C there is always one charge state between
the electro chemical potentials of the 2DEG reservoirs: this corresponds to the first crossing in
Fig. 8.7 and the constant current ] = ¢f curve in Fig. 8.8a. Fig.8.8b also illustrates that at fixed
gate voltage an oscillation minimum for V < ¢/C turns into a maximum for V > e/C, while a

maximum becomes a minimum.
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FIG. 8.8. (a) Current versus center gate voltage for f = 10 MHz and fixed
different bias voltages. The current oscillates with a frequency determined amplitude
in the interval between n-ef and (n + 1)-ef. (b) Schematic representation of
tunneling through the dot for two different bias voltages (left and right figures), and
center gate voltage, indicated by the difference of the locations of the electro
chemical potentials of the reservoirs (dashed lines) with respect to the charge states
in the dot (solid lines).
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To examine the dependence of the current plateaus on RF amplitude, we have measured I-V
curves for f = 10 MHz and fixed RF amplitude on QPC3. The RF amplitude on QPC; is
increased in constant steps from the uppermost curve in Fig. 8.9 to the lowest curve. Fig89
shows that for the same center gate voltage, all the plateaus from n=-7 to 7 are made visible by
changing the RF amplitude on one QPC gate. A striking feature is that around zero voltage, a
non-zero current is observed, which can be either positive or negative. This is due to the non-
compensated influence of the unequal RF signals on the bottom of the conduction band in the
dot, as explained in relation to the pump experiment using one RF signal in section 8.2.3. The
direction of the pumped current is in agreement with the model and the measurements in Fig.
8.3. For the upper curves in Fig. 8.9 where VoRF > VRF  the pumped current is positive, while
for the lower curves where VRF > V,RF  the current around V = 0 is negative. We return to this
point quantitatively in the next section.

A similar plot as Fig. 8.9 has been measured by taking constant and compensating RF

amplitudes, but now inducing an asymmetry by changing the phase difference around 7 between

CURRENT (pA)

VOLTAGE (mV)

FIG. 8.9. IV curves with fixed RF amplitude on QPC3 (VoRF = 33 mV) and
taking different RF amplitudes on QPCj (from ViRF = 28 mV for the uppermost
curve to 42 mV for the lowest curve in steps of 0.53 mV), showing all the current
plateaus from -7-¢f to 7-ef. The I-V curves are not offset.
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the two RF signals. A few curves are shown in Fig. 8.10 for f = 20 MHz and the phase
difference ¢ = ¢; — ¢2 ranges from 7 (uppermost curve) to & + 7/10 (lowest curve). It is seen that
the average slope <G> =fC is not affected by the phase difference around 7. Instead the curves
shift to lower currents, where pumping takes place in the quadrant V 2 0, I < 0. Note that around
V =0, current plateaus are seen at -3-¢f and -5-ef. From Figs. 8.3 and 8.4, one can deduce that
for V = 0 and V;RF = V,RF QPC, pumps electrons over the barrier induced by QPC2 when ¢ >
7. In our case this yields a negative current in accordance with the measurements. The pumped
current is positive when the asymmetry is reversed to ¢ < 7 (not shown).

From these measurements, we have been able to deduce the effect on the quantized current
plateaus of the various parameters as the center gate voltage, the RF amplitudes, and the phase
difference. To demonstrate the tunability of the quantum dot turnstile, we have measured the
pumping in more detail, which is shown in Fig. 8.11. Tuning the different parameters, we
produced quantized current plateaus from n=-5 to 5 around zero voltage, showing that a discrete

number of electrons are pumped per RF cycle.

CURRENT (pA)

VOLTAGE (mV)

FIG. 8.10. I-V characteristics where the phase difference between the two equal
RF signals is changed from & (uppermost curve) to 7t + m/10 (lowest curve). The I-
V curves are not offset.
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10

FIG. 8.11. I-V characteristics
with tuned center gate voltage, RF
amplitudes, and phase difference
such that quantized current plateaus
are obtained from -5-ef to 5-ef at
zero bias voltage, demonstrating
discrete electron pumping. The I-V
curves are not offset.
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8.4 DISCUSSION AND CONCLUSIONS

Our simple model in terms of electro chemical potentials explains all the qualitative aspects of
the data, e.g. the existence and location of the current plateaus, their sensitivity on the center gate
voliage, and the dependence of the I-V curves on the RF amplitudes and phase difference,
including the direction of the pumped current. We now use the model for a quantitative estimate
of the turnstile measurements for the case when an asymmetry causes pumping of a discrete
number of electrons. First we note that in a symmetric system, the net current is always zero.
Usually the symmetry is broken by applying a bias voltage. In our quantum dot system, an
asymmetry is also induced when the RF voltages differ in amplitude or when the phase
difference ¢ is not equal to « or 0. Such an asymmetry can result in a pumping of electrons to

higher energy and creates a preferred current direction. To estimate quantitatively the pumping
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for non-compensating RF signals, we write the change in electro static potential in the dot as :

C]VI zR

A¢ =

sin(2 7ft) + sin(2nft + ¢) (8.1)
The influence on the band bottom does not give rise to pumping when A « e/C. To discuss Fig.
8.9, with Eq. 8.1 we take ¢ = &, but different RF amplitudes V;RF # V2RF The number of
electrons which are pumped between the maximal amplitude V;RF/,,,. = 42 mV (i.e. the lowest
curve in Fig. 8.9) and the minimal amplitude ViRF/y;, = 28 mV is given by (ViRF/ a0y —
ViRF | min)l(e/C1) = 4 (Note that e/C; = AV = 3.6 mV is the period of the Coulomb oscillations
in Fig. 8.2a.) This is in good agreement with the measured difference of just under 5 electrons
per cycle.

The estimation of the accuracy of the quantized current plateaus of about 1 % is roughly what
we observe in the experiments. The prospects for the quantum dot turnstile for serving as a
highly accurate current device, can be deduced from the analysis in section 8.3.1. The
probability of the wanted tunnel events (solid arrows in Fig. 8.4) differs from 1 by an
exponentially small amount which can be made virtually zero. Deviations of the current plateaus
from the quantized values caused by thermaily activated transport can also be neglected at
measurement temperatures below 0.1 K. The limiting factor of the current accuracy is the leakage
probability Pje,; of the barriers in their equilibrium position (dashed arrows in Fig. 8.4). Pogt =
1 — expl-(L/f)/RC/1eak] = (1/f)/RC]1eak decreases only linear with the leakage resistance. For f =
10 MHz, and C = 10-10F, a leakage resistance of 1015 Q is required to obtain an accuracy &l/ef
= 10-8. Such a large resistance can be obtained by increasing the width of the tunnel barriers on
which it depends exponentially. Note that the leakage current between the gates and the 2DEG
should also be smaller than &f, which can be accomplished by an insulating layer between the
semiconductor and the gates. Moreover, we note that tunneling via virtual states which limits the
accuracy of the metal turnstile,!? is suppressed by the large barrier resistance, and does not play
a limiting role in our quantum dot turnstile. However, for typical frequencies of 10 MHz, the
resulting current ef = 1.6 pA is much too small for practical applications. A parallel-configuration
could upgrade the quantized current level by several orders of magnitude. The unresolved
problem of a parallel configuration is the distribution of offset charges among the dots, which
would effectively average the current plateaus. For any application involving large scale
integration of charging effect devices, methods must be developed to relax these offset charges.

In summary, we have described the realization of a turnstile operation in a semiconductor
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quantum dot. For the first time, oscillating tunnel barriers are used to control current on a single-
electron level. We have observed quantized current plateaus at multiples of ef, which
demonstrates the passage of a discrete number of electrons through our quantum dot turnstile.
The device can pump a discrete number of electrons at zero bias voltage when an asymmetry is
induced by applying non-compensating RF voltages to the barrier gates. The prospects of the
quantum dot turnstile to serve as an accurate current device depends on the technological

realization of operating many of them in parallel.

ACKNOWLEDGEMENTS

We wish to thank L.J. Geerligs, P. Hadley, K.K. Likharev, J.E. Mooij, and B.J. van Wees
for stimulating discussions, and D.J. Maas for his contributions to the device fabrication, and the
Delft Institute for MicroElectronics and Submicrontechnology for the use of their facilities
Financial support from FOM and ESPRIT (project 3133, NANSDEYV) is gratefully
acknowledged. L.P.K. acknowledges the Sakaki Quantum Wave Project in Tokyo for the

hospitality during the preparation of the manuscript.

REFERENCES

The results in this chapter have been published in Phys. Rev. Lett. 67, 1626 (1991), and in
Zeitschrift fiir Physik B-Condensed Matter 85, 381- 388 (1991).

1. See for a review: D.V. Averin and K.K. Likharev, in Quantum Effects in Small Disordered
Systems, edited by B.Al'tshuler, P. Lee, and R. Webb (Elsevier, Amsterdam, 1990).

2. See for arecent review, including various semiconductor systems: Single Charge
Tunneling, H. Grabert, J.M. Martinis, and M.H. Devoret, eds. (Plenum, New York,
1991).

3 P. Delsing, K.K. Likharev, L.S. Kuzmin, and T. Claeson, Phys. Rev. Lett. 63, 1861
(1989), and in Ref. 2.

4. L.J. Geerligs, V.F. Anderegg, P.A M. Holweg, J.E. Mooij, H. Pothier, D. Esteve, C.
Urbina, and M.H. Devoret, Phys. Rev. Lett. 64, 2691 (1990).

5. H. Pothier, P. Lafarge, P.F. Orfila, C. Urbina, D. Esteve, and M.H. Devoret, Physica B
169, 573 (1991).

6. L.S. Kuzmin, and D.B. Haviland, Phys. Rev. Lett. 67, 2890 (1991).

7. L.J. Geerligs, S.M. Verbrugh, P. Hadley, J.E. Mooij, H. Porthier, P. Lafarge, C. Urbina,
D. Esteve and M.H. Devoret, Z. Phys. B - Condensed Matter 85, 349 (1991).



chapter 8§

11.
12.
13.

14,

15.

16.

17.

18.

19.

Q. Niu, Phys. Rev. Lett. 64, 1812 (1990).

F. Guinea, and N. Garcia, Phys. Rev. Lett. 65, 281 (1990).

See also: L.P. Kouwenhoven, A.T. Johnson, N.C. van der Vaart, C.J.P.M. Harmans, and
C.T. Foxon, Phys. Rev. Lett. 67, 1626 (1991).

A.A. Odintsov, Appl. Phys. Lett. 58, 2695 (1991).

U. Meirav, M.A. Kastner, and S.J. Wind, Phys. Rev. Lett. 65, 771 (1990).

The interplay between charging effects and discrete energy states are reported by: P.L.
McEuen, E.B. Foxman, U. Meirav, M.A. Kastner, Y. Meir, N.S. Wingreen, and S.J.
Wind, Phys. Rev. Lett. 66, 1926 (1991).

Charging experiments on this structure without applying RF signals are reported by: L.P.
Kouwenhoven, N.C. van der Vaart, A.T. Johnson, W.Kool, C.J.P.M. Harmans, J.G.
Williamson, and A.A.M. Staring, Z. Phys. B - Condensed Matter 85, 367 (1991);

L.P. Kouwenhoven, N.C. van der Vaart, A.T. Johnson, C.J.P.M. Harmans, J.G.
Williamson, and A.A.M. Staring, Festkorperprobleme/Advances in Solid State Physics, U.
Rossler (ed.) Vol. 31 (1991).

The device described in this paper is different from the device in Ref. 14, but has the same
gate geometry.

We neglect the energy separation between the dot's discrete levels, which in this sample is
less then a tenth of the charging energy; see also Ref. 14,

L.P. Kouwenhoven, B.J. van Wees, C.J.P.M. Harmans, J.G. Williamson, H. van
Houten, C.W.J. Beenakker, C.T. Foxon, and J.J. Harris, Phys. Rev. B 39, 8040
(1989).

We also found a current plateau at ef in a previous sample, but due to intrinsic sample
instabilities these results were less clear.

D.V Averin, and Yu. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).



CHAPTER 9

Zero Dimensional States and Single Electron Charging in
Semiconductor Quantum Dots

A.T. Johnson, L.P. Kouwenhoven, W. de Jong, N.C. van der Vaart,
and C.J.P.M. Harmans
Faculty of Applied Physics, Delft University of Technology,
P.O. Box 5046, 2600GA Delft, The Netherlands

C.T. Foxon
Philips Research Laboratories, Redhill, Surrey RH1 SHA, United Kingdom

ABSTRACT
We have observed new effects in transport through lateral quantum dots where zero-dimensional
(OD) states and single electron charging coexist. In linear transport we see coherent resonant
tunneling, described by a Landauer formula despite the many-body charging interaction. In the
non-linear regime, Coulomb oscillations of a quantum dot with about 25 electrons develop 0D
shoulders as the bias voltage increases, and the current-voltage characteristic has a double

staircase shape.
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Electron transport through semiconductor quantum dots shows striking effects due to the
electron wave nature and its finite charge. The first leads to the formation of zero dimensional
(OD) states with discrete energies in a system confined in all three directions,!:2 and the possibil-
ity of coherent resonant tunneling.2 The latter induces Coulomb effects, which cause a strong
shift in the dot energy upon addition of a single electron. This phenomenon has been investigated
in many systems,3 and may soon be used in devices such as ultra-sensitive charge meters 4 and
frequency-based current standards.5:6

Experiments are beginning to be done on quantum dots in which these effects coexist.
McEuen et al.” used transport measurements to determine the magnetic field dependence of N-
electron ground state energies in such a system, and related it to the calculated energies of single-
particle levels in the absence of charging. Similar issues have been addressed in the few electron
limit using capacitive 8 and optical ? techniques. In properly designed double barrier resonant
tunneling structures, 0D-states or charging can be important, depending on the sign of the bias
voltage.10 Here we report new results from dots where OD-states and charging appear together.
We observe coherent resonant tunneling in the linear regime (low bias voltage), well described
by a Landauer formula despite the presence of the many-body charging interaction. In nonlinear
transport, we see the signature of the coexistence of these phenomena, allowing a qualitative
spectroscopy of the excitations of a quantum dot containing about 25 electrons.

The two quantum dots used for this work were defined by metal gates on top of a
GaAs/AlGaAs hetero structure with a two dimensional electron gé\s (2DEG) 100 nm below the
surface. The ungated 2DEG has mobility 230 m2/Vs, and electron density 1.9 x 1015 m2 at 4.2
K. In each case, applying -300 mV to the gates depletes the 2DEG beneath them and forms a
quantum dot coupled to large electron reservoirs via quantum point contacts (QPCs). The geome-
try of dot 1 was discussed in Ref. 6. It has lithographic dimension 800 nm x 1 um; with the
effects of depletion, we expect this dot to be circular with a diameter of about 600 nm. The inset
of Fig. 9.3 shows the layout for sample 2, with QPC gate pairs 1 and 2, and center gate pair C.
The central region is 200 nm x 600 nm. By applying a more negative voltage to the center gate
pair (typically -900 mV), we again make a dot that is roughly circular, but now with diameter
100 nm. Channels between gates are fully depleted and do not conduct. All measurements were
done in a dilution refrigerator with a base temperature below 20 mK. Measurements on sample 1
were made at a magnetic field B = 7 T. Transport through the dot occurs via the edge channel 1!
of the lowest energy Landau level, and is essentially one-dimensional.2

If a quantum particle of appropriate energy propagates without loss of phase memory between
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two barriers, coherent resonant tunneling can occur. Multiply reflected partial waves construc-
tively interfere, as in an optical Fabry-Perot cavity, and the transmission chance can approach 1,
even if each barrier alone is highly reflecting. At zero temperature, in one dimension, and in the

absence of charging effects, the conductance of this interferometer is given by:

G = e’ LT,
| _ 1/2
h 1+(1-T)A-T)-2[(1-T)A-T,)]"*cos ¢ 9.1)

where T} and T are the barrier transmissions, and ¢ is the phase acquired by a wave during one
round trip between the barriers. Eq. 9.1 combines the two-barrier transmission formula of basic
quantum mechanics with the Landauer relation between transmission and conductance. Finite
temperature leads to energy averaging by the derivative of the Fermi function, reducing the peak
transmission and increasing the resonance width.

Fig. 9.1a shows the measured conductance of QPC1, proportional to its transmission 77, as a
function of gate voltage V in the region near pinch-off when QPC3 is set to be fully transmit-
ting. The irregular structure in G(V;) is typical of our QPCs at high field, and is probably due to
potential fluctuations in or near the point contact. When we set QPCj in the tunnel regime (T2 =
0.02), sweeping V; produces the periodic conductance peaks of Fig. 9.1b. These are the well-
known Coulomb oscillations 3 of the charging regime. The peak height of the oscillations shows
a striking modulation that is correlated with the transmission T7 of QPC; (Fig. 9.1a), but in a
non-classical manner. Near V; = -770 mV and -850 mV, for example, the peak conductance is
strongly suppressed, even though T is at a maximum of 0.6. The classical, sequential tunneling
prediction for the conductance maxima is shown by the dashed line in Fig. 9.1b: G¢; = (e2/h)
TT2/(T1 + T2 — T1T>). The fit to the data is poor, with the measured conductance exceeding the
prediction by as much as a factor of 15.

In contrast, the peak conductance (cos¢ = 1) from the quantum transmission formula of Eq.
9.1 agrees well with the data, when thermal averaging of 40 mK is taken into account (Fig.
9.1b, heavy line). This agrees well with the temperature and measuring voltage (5 pV) of the
experiment. In a coherent system, the barrier transmissions must match in order to have total
transmission well above the sequential value. Since T2 = 0.02 in the experiment of Fig. 9.1b,
increasing the transmission QPC above this value actually decreases the total transmission

predicted by Eq. 9.1, precisely the effect seen in the data.
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FIG. 9.1. (a) Conductance of QPCj versus gate voltage V| for the first sample.
QPC3 is set at full transmission. (b) Coulomb oscillations of dot 1 as V| is swept,
changing T;. T2 is about 0.02. The maximum peak height calculated with Eq. 9.1
and an effective temperature of 40 mK is shown with a heavy line. The dashed line
is the classical prediction (see text). The magnetic field is 7 T.

This experiment demonstrates for the first time that coherent electron transport described by
the independent electron Landauer formula is possible even in the presence of the strong
Coulomb interaction. Although initially surprising, this result is in agreement with the idea that
transport in the linear regime occurs only when the electro chemical potential of the dot is equal
to that of the reservoirs.!2 Transport of the Nth electron is an energy-conserving process, so its

phase memory is maintained, even though the other N — 1 electrons undergo a Coulomb energy
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change. Meir and Wingreen 13 have recently developed a Landauer-type formula for an interact-
ing system.

The second experiment on the smaller dot 2 demonstrates properties of non-linear transport in
the presence of both charging and OD-states. When a set of 0D-states with energy Ey and
charging coexist, the electrochemical potential (ECP) of the dot changes discontinuously as the
number of electrons increases: tg(N + 1) — ugN) = Ec + 6E,12 giving a "ladder" of ECP levels.
Here Ec = €2/C is the electro static energy associated with charging the quantum dot by one
electron (C is the total capacitance from the dot to ground), and 6E = En.4j — Ep is the energy
between OD-states. This is also the minimum energy JE needed to excite the N-electron ground
state at a fixed number of electrons. With diameter d = 100 nm, dot 2 contains about N = 25
electrons at the bulk density. We roughly estimate the charging energy Ec = €2/C =~ e2/4€,€,d =
3.5 meV, where & = 13 for GaAs, and excitation energy 6E = Er/N = 300 ueV. Both these
values far exceed kgT at 20 mK. Although we refer here to independent charging and OD-state
energies, the concepts can be generalized: even in a correlated system we can speak of a change
in ECP associated with adding one electron to the dot and an excitation energy when the number
is fixed. These are the analogs of Ec + 6F and OF, respectively.

Calculations for /-V characteristics exist,14 but the potential landscape of Fig. 9.2a gives a
qualitative understanding. At zero temperature, the states of the left (right) reservoir are fully
occupied up to the ECP level 1 (Ug) and empty at higher energies. The ECPs py(NV) and (N +
1) characterizing the N- and (NV + 1)-electron ground states are indicated by solid lines, while
dashed lines represent the discrete 0D excited states of the dot.

Suppose the bias voltage is such that p; > up. Electrons flow from left to right only if the
transport condition ti; > tig(N) > Jip is satisfied. When this is true, all states in the dot between
1y and Lip are energetically allowed to contribute to the current. More allowed states give a larger
transition rate and a larger current. Changing V¢ shifts the conduction band bottom and the ECP
ladder. If y; — up < Ec + OE the transport condition is alternately satisfied and not satisfied,
giving well separated Coulomb oscillations in the current with minima going to zero. In the
metallic limit, when the broadening of the OD-states is much larger than the splitting 8E, the dot
excitation spectrum is continuous. As the bias voltage eV = p; — up increases from zero, the
oscillations broaden and grow in amplitude, but remain featureless.

This is no longer true when discrete OD-states exist. At small bias eV « E¢, 8E, the number of
states in the allowed energy window between p and ug changes from Oto 1 to 0 as V¢ is

scanned, giving a smooth oscillation (Fig. 9.2a). When eV is of order 6E, however, this model
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FIG. 9.2. (a) Potential energy landscape (left) and Coulomb oscillation (right)
for a quantum dot with a voltage bias V << J8El/e. Solid lines are ECP levels for N
and N + 1 electrons, while dashed lines represent excitations. The number of states
available for transport is shown as the gate voltage is scanned. (b) Same as (a), but
with bias V = 8Ele, showing the appearance of 0D shoulders. (c) Evolution of 0D
shoulders with increasing bias voltage in dot 2. The curves are offset for clarity.
From the bottom, the bias voltages are: 100 uv, 400 uv, and 700 uv. The
magnetic field is 4 T.

predicts the appearance of "OD-shoulders" in the oscillations. While the transport condition is
satisfied, the number of allowed states alternates between p and p + 1, where p < eV/SE <p + 1,
and the current changes accordingly. When p > 0, the Coulomb oscillations are not simple

peaks, but have a more complicated shape reflecting the discrete spectrum of OD-excitations.
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This is shown in Fig. 9.2b for the case when the number of states available for transport changes
as 0-2-1-2-0.

The appearance of 0D shoulders in the Coulomb oscillations of dot 2 with increasing bias
voltage is shown in Fig. 9.2c. The magnetic field is 4 T. Starting with the bottomn curve, the bias
voltages are 100 uV, 400 puV, and 700 pV; the traces are offset for clarity. Above the shoulders
we show the number of states contributing to transport. We can estimate the 0D splitting E by
noting that since 2 and 3 OD-states appear in intervals of 400 uV and 700 uV respectively, we
have 270 uV < 6E < 350 puV, if we assume a constant 8E, as is more or less true in the data.
This measured typical excitation energy agrees with the estimate given above based on the

inferred dot size, and confirms the fact that the dot contains about Er/SE = 25 electrons.

2
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CURRENT [nA]
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FIG. 9.3. I-V characteristics for dot 2 at B = 0 and different center gate voltages,
showing the double staircase structure. Inset: gate geometry of sample 2. Transport
is from left to right through the QPC's I and 2.
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The dot's OD excitation spectrum also causes structure in the I-V characteristic.14 Consider
again the energy landscape of Fig. 9.2a, and imagine increasing y; from gy = ug, while up is
held fixed. At small bias, the Coulomb blockade suppresses current until ti; > 1 (N) > tip. As
}y increases from this point, the current grows in small steps as OD-states enter the window
between y and pg one-by-one and contribute to transport. Eventually an extra charge level
4N + 1) is included between y; and pg. At this point a larger current jump will occur, since
transport can occur two electrons at a time. The /-V characteristic has a double step structure with
small 0D excitation steps and larger steps of the Coulomb staircase familiar from the metallic
regime.12

This double step structure is clearly visible in the I-V characteristics of Fig. 9.3, taken at zero
magnetic field. The different curves are taken for different center gate voltages. The uppermost
curve corresponds to a minimized Coulomb gap, while in the lowest curve the Coulomb gap is
maximal. The typical spacing between OD-states is 300 PV, in good agreement with the above
estimates of 6F.

The current increases in steps as additional OD-states fall between 1 and g, so peaks occur
in the differential conductance df/dV at the dot excitation energies. A qualitative tunnel
spectroscopy of the discrete levels is possible, although it is complicated by the voltage drop
across the tunnel barriers, which shift the dot energy levels as the bias voltage is scanned.

In Fig. 9.4 we show a succession of traces of dI/dV versus bias voltage for magnetic fields
from O (top curve) to 2.5 T (bottom curve). The center gate voltage V¢ was tuned at B = 0 so
that there was no Coulomb blockade. From the maximum Coulomb blockade observed in the I-V
characteristics, we know that Ec + 6E = 3.5 mV, in agreement with the estimated dot size. All
peaks in dI/dV at IVl < 3.5 mV, then, correspond to excitations of the dot at fixed electron
number. These measurements let us track the field dependence of the discrete excitation energies
of a quantum dot in the charging regime.

In summary, our quantum dot samples show the combined effect of OD-states and single
electron charging in both linear and non-linear transport. Coherent resonant tunneling can occur,
well described by the Landauer formula, despite the charging interaction. Coulomb oscillations
and I-V characteristics show additional structure due to the dot's 0D-excitation spectrum.

We thank J.E. Mooij and J.J. Palacios for useful discussions; D.J. Maas, W. Kool, and A.
van der Enden for sample fabrication; and the Delft Institute for Microelectronics and Submicron
Technology for the use of their facilities. This research was supported by FOM and ESPRIT
(NANSDEY, project 3133).
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ABSTRACT
In a novel type of quantum dot fabricated by combined techniques of etching and gates, we have
performed single electron charging experiments. In this new structure the number of electrons
localized in the dot can be tuned down to of order 10. We found that a change of one electron in the
dot does not result in a single Coulomb peak, but instead a multiple peak structure is observed in
the linear response conductance. In addition, we show that the accuracy of the quantized current

plateaus during turnstile operation can be largely improved.
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10.1 INTRODUCTION

The number of electrons localized on an isolated Coulomb island is necessarily an integer. This
is the basic ingredient for the numerous experiments on single electron charging of metallic and
semiconductor islands.!-3 In these experiments the Coulomb island is weakly coupled to
conducting leads by tunnel barriers, in order to allow transport. The voltage on a third, gate,
terminal is used to change the number of electrons on the island. The competition between the
continuously changing electro static energy coming from the gate potential and the discrete electron
charging energy, results in periodic transport behaviour. At the transition between N and N + 1
electrons on the island, the system is conducting. Transport is blocked between transitions by the
charging energy. The periodic oscillations in the island conductance versus gate voltage are known
as Coulomb oscillations and each period reflects a change of one electron on the island. In metallic
systems where the density of states is continuous, the oscillations are perfectly periodic and have a
constant amplitude.!-3 In semiconductor quantum dots, however, the density of states may be
discrete due to the quantum confinement. In the semiconductor islands investigated so far, which
are a few hundred nm in size, this results in Coulomb oscillations which are slightly non-periodic.
The deviation from perfect periodicity reflects the energy separation En+; — Ex between adjacent
zero dimensional (OD) states compared to the constant, usually much larger, charging energy e2/C.4
The amplitude of the Coulomb peaks is often found to be modulated in an irregular way. This is
due to the very sensitive nature of resonant tunneling through a particular OD-state on the precise
scattering at the tunnel barriers or at potential fluctuations on the island.5 However, the basic
charging ingredient continues to be clearly observable; each period corresponds to a change of one
electron.

In this chapter we discuss charging experiments on a novel quantum dot structure in which we
can tune the number of electrons down to the regime of order 10. The preliminary data we have
obtained on this new structure shows Coulomb oscillations in the linear response conductance
where each Coulomb peak consists of a multiple peak structure. In this data, it is no longer possible
to associate each conductance peak with the change of one electron. Employing the particular gate
geometry we will also show that strong current quantization is obtained when we operate the device

as a quantum dot turnstile.6
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10.2 GATED - ETCHED QUANTUM DOT DEVICE

Fig. 10.1a schematically shows a cross-section of a new hybrid type of quantum dot, which is
fabricated with a combined shallow-etch and gate technique. First, a narrow wire is defined in the
two dimensional electron gas (2DEG) of a GaAs/AlGaAs hetero structure by wet shallow etching.?
Before processing, the mobility of the 2DEG is 80 m2V-1s-1 and the electron density is 4-1015 m-2,
The shallow etching removes only part of the doped AlGaAs layer. Due to surface depletion a
shallow etch can be sufficient to confine the electrons into the unetched region. We found that the
conducting width is roughly 0.4 um less than the geometrically etched width W,, of the channel. On
top of the wire two gates are fabricated which are used to induce two tunnel barriers separated by a
distance W, Negative voltages applied to the gates G; and G2 induce two barriers in the etched
channel which weakly couple the intermediate submicron sized island to the conducting leads. An
extra side gate is fabricated for tuning the width and electron density of the wire in the region of the
dot. About 5 pm away from the quantum dot, the wire widens into current and voltage Ohmic

contacts. We

(a)

FIG. 10.1. (a) Cross-section of the

quasi 1D wire fabricated with a com- G sﬁ%ﬂ
bined shallow-etch and gate technique.
(b) Scanning electron micrograph of a
device with an etched wire width W, =
0.7 um and a distance between the
barrier gates Wg = 0.2 pim.

\.electron gas

(b)
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Several devices have been fabricated with different combinations of the etched wire width W,
and distance between the barrier gates Wy. Fig. 10.1b shows a scanning electron micrograph of a
typical device with dimensions W, = 0.7 um and W, = 0.2 pm. The expected advantage of this
type of device compared to quantum dots which are completely defined by metal gates, is that the
amount of conductors in the vicinity of the dot is reduced, so the expected capacitance of the dot
will be smaller. Another aspect we want to explore is that electrons will have to tunnel through the
region underneath the gates, in contrast to tunneling through barriers induced by split-gates. In
addition, the barrier gates have been made rather wide (0.2 um). This will give a much stronger
dependence of the barrier conductance on gate voltage, which in the next section we will use to

obtain an improved accuracy of the quantized current plateaus in.a quantum dot turnstile.6
10.3 QUANTUM DOT TURNSTILE

In a device with dimensions W, = 0.5 um and W, = 0.5 um we have repeated the turnstile
experiment discussed in chapter 8. In Fig. 10.2 an /-V characteristic is shown measured for a RF
frequency f = 10 MHz at 10 mK. The data is corrected by subtracting a constant parallel resistance
of 150 MQ. We note that without applying RF we found that this parallel resistance was larger than
500 GQ. From other experiments we have learned that RF signals can lead to conduction through
regions which are non-conducting when no RF is applied. The reason is that the RF signals can
pump electrons to a higher energy such that they are lifted over a relatively low barrier.6 The
parallel conducting path is most likely located between the barrier gates and the side gate underneath
the shallow etched region. Apparently, the etching has not been deep enough to prevent conduction
during turnstile operation through this nearly depleted 2DEG region. The necessary correction
makes the data unreliable for precise conclusions on the accuracy of the observed quantized current
plateaus. However, Fig. 10.2 shows that this new device geometry can lead to very strong current
quantization. The strong dependence, presumably exponentially, of the barrier conductances on
gate voltage, causes a large suppression of the leakage events, the main effect liriliting the current
quantization in the previous experiments.® The result is that the plateaus are now rather wide (1.2
mV) compared to the stepwidth (0.5 mV). Moreover, in this device all plateaus are observed, while
in the previous split-gate device some were only weakly developed or absent.

The period in voltage AV of the plateaus directly reflects the charging energy: eAV = €2/C = 1.7

meV. This value is a factor 3 to 5 larger than obtained in dots which are completely defined by
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FIG. 10.2. I-V characteristic on applying RF signals to the barrier gates with
frequency f = 10 MHz and a phase difference of n. The dotted lines indicate
multiples of ef = 1.6 pA. The data is corrected for a parallel resistance of 150 M.

split-gates, and is due to the reduced amount of conductors (i.e. gates) in the vicinity of the dot.
The larger charging energy indicates that the current quantization may also be observed at higher
ternperatures.

10.4 COULOMB OSCILLATIONS WITH A MULTIPLE PEAK STRUCTURE

In this section we discuss Coulomb oscillations in the few electron regime. The conductance
measurements are performed at 10 mK with a dc source-drain voltage bias V and measuring the dc
current /. First, we discuss the results on a sample with an etched width W, = 0.7 um and a
distance between the barrier gates W, = 0.2 um. Fig. 10.3 shows the conductance G = I/V versus

side gate voltage Vg4, at zero magnetic field. The different curves are measured for different bias
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voltages V. The barrier conductances are made much smaller than the conductance quantum 2e2/h.
The traces in Fig. 10.3 show two types of oscillations: regular oscillations with a period changing
from 30 to 40 mV, and less regular finestructure with a typical period of a few mV. Note that in the
traces with the smaller bias voltage the minima in the finestructure approach zero conductance. The
finestructure is seen to disappear when the bias voltage is raised up to 0.4 mV. The larger
oscillations are found to disappear at a bias voltage of about 2 mV (not shown).

The oscillations with the larger period are Coylomb oscillations where each period corresponds
to a change of one electron in the dot. We deduce this from the fact that the periodicity in the
Coulomb staircase in I-V characteristics and in turnstile measurements are the same. From the
stepwidth in the (turnstile) staircase we found that the charging energy for adding a single electron
depends quite strongly on the gate voltages and gradually increased from about 1.7 meV for gate

voltages as in Fig. 10.3 to about 3 meV at larger negative gate voltages. These values are in

CONDUCTANCE (e*/h)

22 T 21 ' 2
SIDE GATE VOLTAGE (V)
FIG. 10.3. Conductance versus side gate voltage at zero magnetic field. The

different curves are measured for different bias voltage (from lowest to uppermost
curve: 0.01,0.03,0.1, 0.2, 0.4 mV) and are offset for clarity.
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accordance with the observed disappearance of the Coulomb oscillations when the bias voltage is
raised to about 2 mV. So, while the Coulomb oscillations represent counting electrons, the multiple
peak structure occurs within a Coulomb peak at the transition between N and N+1 electrons in the
dot.

In Fig. 10.4 traces are shown for different magnetic fields which are measured at small bias
voltage V =10 uV. It can be seen that a magnetic field up to a few Tesla does not change the period
of the Coulomb oscillations, but does affect the precise shape of the finestructure. However, a
magnetic field of a few Tesla does not change the observation that the Coulomb oscillations contain
finestructure. In another device with dimensions W, = W, = 0.5 um, we found that all the

finestructure disappeared at a field of 1.5 T and regular Coulomb oscillations remained.

24T
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FIG. 10.4. Conductance versus side gate voltage for small bias voltage V = 10
WV and for different magnetic fields.
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To obtain an estimate of the energy separation Ey, 1 — En between the OD-states we have
measured a single Coulomb oscillation for different bias voltages V in order to look for the "0D-
shoulders" discussed in Ref. 8 and in chapter 9. Fig. 10.5 shows one Coulomb oscillation which at
small bias vé)ltage is split into two well-separated peaks. On increasing the bias voltage it is seen
that the amplitude of the left peak decreases and gradually goes to zero. The right peak, however,
seems to be of a different nature because on increasing the bias voltage it starts to show shoulders.
In contrast to the vanishing conductance between the two peaks in the lowest trace, the minima
between shoulders stay finite which is expected from the tunnel rate modulation due to an
alternating number of 0D-states between the two electro chemical potentials of the reservoirs.8 This
illustrates that the multiple peaks are from a different origin than the OD-shoulders. In the topmost
curve, S shoulders are seen which means that the number of OD-states available for tunneling into
the dot, alternates between 5 and 4. The energy separation between (spin-degenerate) adjacent 0D-
states AEgp can be estimated from 4-AEgp < eV = 1 mV < 5:AEgp from which we get AEgp ~ 0.2
meV.

The multiple peak structure is also seen when one of the voltages V; and V2 on the barrier gates
is varied, while keeping the voltages on the other gates fixed. From the Coulomb oscillation
periods in these measurements we deduced the capacitances C; = 0.27-10°16 F between the dot and
barrier gate G, and C2 = 0.40-10-16 F between the dot and barrier gate G2. The capacitance
between the dot and the side gate is much smaller Cyige = 0.04-10-16 F, in accordance from what
we expect from the gate geometry. We note again that the different capacitances depend on the
absolute values of the gate voltages. The sum of the capacitances between the gates and the dot
leads to roughly the same charging energy e2/(C7 + C2 + Csige) = 2.25 meV as obtained from the
Coulomb staircase. The finestructure disappears when only one or no barrier is formed, implying
that the formation of the dot is necessary in order to obtain the multiple peak structure. Other
experimental facts are that the conductance of the channel without applying gate voltages is about 3
times 2¢2/h. This relatively large conductance means that there are no impurities in the channel
which can localize electrons strongly enough to give rise to charging. Moreover, the observation of
the OD-shoulders demonstrate that electro static potential fluctuations in the dot are too small for
destroying the OD-states.

Finestructure similar to what we have observed was recently reported by Ford et al.? When they
made their dot as small as possible by squeezing the gate voltages, they found that a few maxima in
the Coulomb oscillations started to split up in double peaks.
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FIG. 10.5. A single Coulomb oscillation measured for different bias voliages
(from lowest to uppermost curve: 0.01, 0.1, 0.2, 04, 0.6, 0.8, and 1.0 mV)
showing OD-shoulders.
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10.5 DISCUSSION AND CONCLUSIONS

Let us first make a crude estimate of the number of electrons in the dot from the area times the
density. With Vg4 =-2 V, and V; = V2 = 0 V, the channel conductance is about 2¢e2/h, which
indicates that the conducting channel width is between 20 and 40 nm, i.e. of order the Fermi wave
length. The distance between the gates is 0.2 jim, so we have about 15 to 30 electrons localized in
an elliptical dot. This number is a rough estimate and is likely to be an upper limit because the
electron density and the distance between the barriers will be smaller when voltages V; and V2 are
applied to the barrier gates.

We will first attempt to explain the multiple peak structure within the standard model for
charging effects. The mixture of the observed two types of oscillations could result from the
convolution of broadened oscillations with a large period and sharp peaks with a smaller period.
The physical origin of such a convolution could be two Coulomb islands in series, one large island
with high barriers (so the charge states are close together and only weakly broadened), and the
other island being small with at least one lower barrier (so here the charge states are farther apart
and somewhat broadened). Because Coulomb islands in series act as an AND-gate (i.e. both
should be conducting in order to get electron transport through the islands in series10), the total
conductance is the convolution of the two individual island conductances. This explains the
multiple peak structure observed by Field et al.ll in conductance measurements on a narrow Si
wire. In their device the random impurity configuration determines the pattern of the multiple
Coulomb peaks. For our measurements such an explanation is very unlikely. From turnstile
measurements we know that the oscillations with the larger period originate in the dot between the
two gate barriers. The finestructure oscillations should then come from a second dot in series which
is a few times larger than our intended dot, and is formed between a large impurity potential and
one of the gate barriers. The channel conductance, however, is roughly 3 times the conductance
quantum when no voltages are applied to the gates. This implies that there are no potential
fluctuations in the wire which can block the transport strongly enough to give rise to charging.
Although the impurity potentials may be influenced when we apply gate voltages, it is virtually
impossible that a strong extra barrier is formed which could give rise to the sharp multiple peaks.
An alternative origin for the finestructure could be an oscillating transmission through the rather
wide barriers. The multiple peak structure is observed over a large range of barrier gate voltages.

Even with an impurity state in the barrier, it is very unlikely that the barrier transmissions oscillate
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with minima going to zero over a wide range of gate voltage. So far, we have been unable to find a
physical origin within the standard Coulomb theory which is consistent with the experimental
observations.

If the multiple peak structure does originate from localizing electrons in the dot, then our data
shows a failure of the charging theory for quantum dots containing only of order 10 electrons;
oscillations no longer represent a change of one electron. One way to explain the finestructure for
the case of a single dot is by assuming that the electro chemical potential pt4(N) for N electrons in
the dot oscillates in a non-monotonic way on changing the confinement. An oscillating pa(N)
crosses the electro chemical potentials of the reservoirs y;, more than once. At each crossing
electron transport is allowed. Between crossings transport is blocked, yielding a minimum within a
Coulomb peak at the transition of N and N — 1 electrons in the dot.

A non-monotonic electro chemical potential contains parts where the compressibility is negative,
i.e. a decreasing electro chemical potential when the system size is reduced. We have considered
several possible correlations between a small number of electrons in a quantum dot looking for a
negative compressibility. We found that independent electrons with an interaction described by a
constant capacitance, the formation of a finite Wigner lattice, and an exact calculation of the energy
spectrum of a few-electron parabolic dot 12 did not lead to a negative compressibility.

Another way which could, at least conceptually, explain the multiple peak structure is an
oscillating tunnel rate with minima going to zero. If the few electrons in the dot form a strongly
correlated electron state, as for instance, a finite Wigner lattice, or a Wigner molecule, tunneling
through such a correlated state may be strongly suppressed due to an orthogonality catastrophe. If
somehow, this tunnel suppression oscillates it could modify broadened Coulomb oscillations with
finestructure having minima going to zero.

For the moment, however, we have to conclude that we can not explain the multiple peak
structure, and that further measurements are needed on different geometries in order to obtain a

better understanding of the behaviour of few electron quantum dots.
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Summary

This thesis describes a number of experiments performed in the period 1988 to 1992 on
submicron semiconductor structures. The submicron structures are defined in the two
dimensional electron gas (2DEG) of a GaAs/AlGaAs hetero structure by means of metallic gates
which are fabricated on top of the hetero structure. Applying negative voltages to the gates
depletes the electron gas beneath them, leaving free electrons only in the ungated regions. A
split-gate geometry with an opering and a length of a few 100 nm induces a channel in the
2DEG, which is short and narrow compared to the elastic mean free path in the 2DEG. The
transport through such a constriction is therefore ballistic. The Fermi wave length of the
electrons is about 50 nm and, therefore, also of order the constriction width, so the electron
wave-nature affects the transport properties. The quantum ballistic transport regime in these
submicron devices is the subject of the first part of this thesis.

The first part describes experiments on several sample geometries. As an introduction, the
conductance of a short, narrow constriction, a guantum point contact (QPC), is discussed. The
lateral confinement in a QPC causes the formation of 1D subbands. Each 1D subband contributes
2€2/h to the conductance, yielding a quantized conductance equal to the number of populated 1D
subbands times the conductance unit 2¢2/h. The breakdown of the conductance quantization is
studied in the non-linear transport properties of QPCs yielding a direct measurement of the
energy separation between the 1D subbands.

On increasing the magnetic field, a gradual transition occurs from the quantized conductance
at zero magnetic field to the quantum Hall effect at high magnetic fields of a few Tesla. QPCs
have furthermore been used as special current and voltage probes to study the electron transport
along the boundary of a 2DEG. It has been demonstrated that the integer quantized Hall
conductance can be completely determined by the properties of the probes instead of the filling
factor in the bulk 2DEG. This experiment has demonstrated that edge channels can be treated as
independent 1D current channels over distances of several microns. We introduced fractional
edge channels as a mechanism for transport in the many-body state of the fractional quantum
Hall effect. It explains an experiment where a fractional quantum Hall effect is observed while
the bulk 2DEG has an integer filling factor.

The properties of edge channels are demonstrated in a gate configuration where two QPCs are
put in series and connected by a closed cavity. At zero magnetic field the individual QPC

conductances add in an Ohmic way. However, when a high magnetic field is applied, the
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electron transport occurs via edge channels. If scattering between edge channels is absent,
electrons travel through the sample with conservation of edge channel quantum number, so-
called adiabatic transport. The absence of scattering between edge channels is demonstrated by
the observation of a series QPC conductance equal to the smallest of the two individual QPC
conductances.

The 3D confinement in the cavity causes the energy states to split up into 0D-states. The OD-
states show up in the conductance through the dot as oscillations when either the magnetic field
is varied or the dot size is changed by means of a gate voltage. A conductance maximum
corresponds to a tunneling resonance occuring when the Fermi energy of the leads coincides
with a OD-state in the dot. In a series of 15 coupled quantum dots, the OD-states originating from
the individual dots form a 1D mini-band structure. The finite number of unit cells in this 1D-
crystal is reflected by the observation of 15 small conductance oscillations (reflecting the discrete
energy band) enclosed by deeper peaks (reflecting the gaps in the band structure).

In the second part of this thesis we discuss charging effects in semiconductor quantum dots.
When such a dot is only weakly coupled to the leads by tunnel barriers, the number of electrons
in the dot is an integer. The addition of an extra electron charges the dot by the elementary charge
e, resulting in an electro static energy increase of €2/C, where C is the capacitance between the
dot and ground. Charging experiments are performed in the linear and non-linear transport
regime. The linear conductance oscillates when the number of electrons is varied by means of a
gate voltage. Each period corresponds to a change of one electron in the dot. Current-voltage
characteristics show the Coulomb staircase. A current step occurs when the bias voltage supplies
sufficient energy to overcome the charging energy e2/C. The interplay between OD-states and
charging results in Coulomb oscillations having maxima approaching the fundamental maximum
value of e2/h, a double-step staircase directly measuring the energy separation between
successive 0D-states, and a measure of the OD energy spectrum in a magnetic field.

Charging effects have been employed to realize a quantum dot turnstile using two out-of-
phase RF signals to induce oscillating tunnel barriers. During each RF cycle an integer number
of electrons pass the dot, resulting in quantized current plateaus at multiples of ef, where f is the
RF frequency. In addition it is shown that when the two RF signals differ in amplitude, an
integer number of electrons are pumped through the device each cycle resulting in current
plateaus around zero bias voltage. It is proposed that an optical analog of the electron
turnstile/pump could be realized by pumping single excitons in a vertical quantum dot with a

pulsed laser.




Samenvatting

Dit proefschrift beschrijft een aantal experimenten die in de periode 1988-1992 zijn uitgevoerd
aan submicron halfgeleider strukturen. De submicron strukturen zijn gedefinieerd in het twee
dimensionale elektronengas (2DEG) van een GaAs/AlGaAs heterostruktuur door middel van
metalen gates, die op de heterostruktuur zijn aangebracht. Door een negatieve spanning op de
gates aan te brengen, wordt het elektronengas onder de gates gedepleerd. Een "split-gate”
geometrie met een opening en een lengte van een paar honderd nm definieert een kanaal in het
2DEG, wat kort en smal is vergeleken met de vrije weglengte. Het transport door het kanaal is
daardoor ballistisch. De Fermi golflengte van de elektronen bedraagt ongeveer 50 nm en is ook
van dezelfde orde als de breedte van het kanaal. Hierdoor kan het golfkarakter van elektronen het
transport gaan bepalen. Het resulterende quantum ballistisch transport door submicron strukturen
vormt het eerste gedeelte in dit proefschrift.

Dit gedeelte beschrijft experimenten aan een aantal sample geometrie€n. Als een inleiding
wordt de geleiding van een kort smal kanaal, een quantum punt contact (QPC), beschreven. De
laterale opsluiting in een QPC resulteert in de vorming van 1D subbanden. Bij magneetveld nul
draagt elke subband 2e2/h bij aan de geleiding, zodat de totale geleiding is gequantiseerd in
veelvouden van 2e2/h. Uit niet lineaire transport metingen aan QPCs kan het energieverschil
tussen de 1D subbanden worden bepaald.

De gequantiseerde geleiding bij nul magneetveld blijkt geleidelijk over te gaan in het quantum
Hall effect bij een hoog magneetveld. QPCs zijn verder gebruikt als speciale stroom- en
spannings-contacten om het elektronen transport langs de rand van het 2DEG te bestuderen.
Daarmee is aangetoond dat het quantum Hall effect volledig kan worden bepaald door de eigen-
schappen van de contacten in plaats van door de vulfaktor in het 2DEG. Dit experiment laat zien
dat randkanalen kunnen worden beschouwd als onafhankelijke 1D stroomkanalen over afstanden
van een paar pum. In analogie hebben we het begrip fraktionele randkanalen geintroduceerd als
een transport mechanisme in de veel-deeltjes toestand van het fraktionele quantum Hall effect.
Het verklaart onder andere een experiment waarin een fractioneel quanturn Hall effect is
waargenomen terwijl het bulk 2DEG een gehele vulfaktor heeft.

De eigenschappen van randkanalen zijn bestudeerd in een configuratie waar twee QPCs in
serie staan met daartussen een gesloten 2D holte. Zonder magneetveld en dus in afwezigheid van
randkanalen, tellen de individuele QPC geleidingen op volgens de wet van Ohm. In een hoog

magneetveld vindt het elektronen transport daarentegen plaats via randkanalen. Indien er geen
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verstrooiing optreedt tussen de randkanalen, bewegen de elektronen door het sample met behoud
van hun Landau-quantumgetal. Dit wordt adiabatisch transport genoemd. Adiabatisch transport
is aangetoond door te laten zien dat de serie geleiding gelijk is aan de kleinste geleiding van een
van de twee QPC.

Door de 3D opsluiting in de holte splitsen de energietoestanden op in OD-toestanden. De OD-
toestanden komen tot uiting als oscillaties in de geleiding wanneer het magneetveld of de grootte
van de quantum holte wordt veranderd. Een geleidingsmaximum correspondeert met resonant
tunnelen, wat optreedt als de Fermi energie van de aanvoerbanen, ofwel de reservoirs, samenvalt
met een OD-toestand in de holte. In een serie configuratie van 15 quantum holtes vormen de OD-
toestanden, afkomstig van de individuele holtes, een 1D mini-bandenstruktuur. Het eindige
aantal eenheidscellen in dit 1D-kristal geeft 15 kleine oscillaties in de geleiding van de holte
(hetgeen de discrete energieband aantoont) tussen diepe pieken (die de energie gap aantonen).

In het tweede gedeelte van dit proefschrift beschrijven we ladingseffecten in halfgeleider
quantum holtes. Indien een holte zwak is gekoppeld aan de reservoirs via tunnelbarriéres, kan er
alleen lading worden toegevoegd in stappen van de elementaire lading e. Dit geeft een elektro-
statische energie verhoging van e?/C, waarin C de capaciteit is tussen de holte en aarde.
Ladingsexperimenten zijn vitgevoerd in het lineaire en niet-lineaire respons regime. De lineaire
geleiding oscilleert als het aantal elektronen wordt veranderd door middel van een gate spanning.
Elke periode correspondeert met de verandering van één elektron in de holte. Stroom-spannings
karakteristicken vertonen de Coulomb trap. Een stroomstap treedt telkens op als de spanning
groter wordt dan de ladingsenergie 2/C. De wisselwerking tussen OD-toestanden en ladings-
effecten resulteert in Coulomb oscillaties met geleidingsmaxima, die het fundamentele maximum
van e2/h benaderen; een dubbele-stap-trap hetgeen een direkte maat is voor de opsplitsings-
energie tussen opeenvolgende OD-toestanden; en een meting van het 0D spectrum in een
magneetveld.

Ladingseffecten zijn gebruikt om een elektronen-draaihek te realiseren door middel van RF
geinduceerde oscillerende tunnelbarriéres. Er is aangetoond dat tijdens elke RF cyclus een geheel
aantal elektronen de holte passeert. Dit geeft gequantiseerde stroomplateaus bij veelvouden van
ef, met f de frequentie van het RF signaal. Tevens is laten zien dat wanneer de RF signalen
verschillen in amplitude, een geheel aantal elektronen door het sample worden gepompt, resul-
terende in stroomplateaus rond nul spanning. Een optisch analogon van de elektronen draai-
hek/pomp moet realiseerbaar zijn door excitonen één voor é€n te pompen in een vertikale

quantum holte met gebruik van een gepulste laser.
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